Skip to main content
Log in

Are Amazonian fish more sensitive to ammonia? Toxicity of ammonia to eleven native species

  • ADAPTA
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Little is known about the tolerance of Amazonian fish to ammonia. However, elevated ammonia of anthropogenic origin may now occur. As Amazonian fish evolved in waters which are generally acidic (i.e., low NH3), we hypothesized that they would be more sensitive to ammonia than other freshwater fish. The acute (96-h) toxicity of NH4Cl was tested in native ion-poor soft water (pH 7.0, ~28 °C) using semi-static tests with 11 species. Species sensitivity distributions (SSDs) for LC5096 h and LC1096 h and calculations of the hazardous concentrations to the most sensitive 5% (HC5 values) were tabulated. Values of LC5096 h/LC1096 h (in mM total ammonia) ranged from 2.24/0.78 for Paracheirodon axelrodi (most sensitive) to 19.53/16.07 for Corydoras schwartzi (most tolerant). These results confirm our hypothesis that Amazonian fish are more sensitive to ammonia than other freshwater species. High levels of ammonia may be associated with hypoxia, especially during dry periods. Simultaneous hypoxia (15–20% saturation) exacerbated ammonia toxicity in the most sensitive species (P. axelrodi), but not in Astronotus ocellatus or Corydoras schwartzi, a facultative air-breather where prevention of air access doubled ammonia toxicity. The present data are useful in generating regulatory guidelines in Amazonian waters and indicate that further studies incorporating hypoxia and air access/denial are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adad, J. M. T., 1982. Controle químico de qualidade da água. Guanabara Press, Rio de Janeiro.

    Google Scholar 

  • Almeida-Val, V. M. F., A. L. Val, W. P. Duncan, F. C. A. Souza, M. N. Paula-Silva & S. Land, 2000. Scaling effects on hypoxia tolerance in the Amazon fish Astronotus ocellatus (Perciformes: Cichlidae): contribution of tissue enzyme levels. Comparative Biochemistry and Physiology B 125: 219–226.

    Article  CAS  Google Scholar 

  • Barbieri, E. & A. C. V. Bondioli, 2015. Acute toxicity of ammonia in Pacu fish (Piaractus mesopotamicus, Holmberg, 1887) at different temperatures levels. Aquaculture Research 46: 565–571.

    Article  CAS  Google Scholar 

  • Brauner, C. J., C. L. Ballantyne, D. J. Randall & A. L. Val, 1995. Air breathing in the armoured catfish (Hoplosternum littorale) as an adaptation to hypoxic, acidic, and hydrogen sulphide rich waters. Canadian Journal of Zoology 73: 739–744.

    Article  Google Scholar 

  • Brauner, C. J., V. Matey, J. M. Wilson, N. J. Bernier & A. L. Val, 2004. Transition in organ function during the evolution of air-breathing; insights from Arapaima gigas, an obligate air-breathing teleost from the Amazon. Journal Experimental Biology 207: 1433–1438.

    Article  CAS  Google Scholar 

  • Bringel, S. R. B. & D. Pascoaloto, 2012. As águas transfronteiriças do Alto Rio Negro. In: Souza, L. A. G. & E. G. Castellón (eds), Projeto Fronteiras: Desvendando as Fronteiras do conhecimento na Região Amazônica do Alto Rio Negro. Chapter 1: 7–22.

  • Brito, J. G., L. F. Alves & H. M. V. Espirito Santo, 2014. Seasonal and spatial variations in limnological conditions of a floodplain lake (Lake Catalão) connected to both the Solimões and Negro Rivers, Central Amazonia. Acta Amazonica 44: 121–134.

    Article  Google Scholar 

  • Camargo, J. A. & A. Alonso, 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment International 32: 831–849.

    Article  CAS  PubMed  Google Scholar 

  • Cavero, B. A. S., M. Pereira-Filho, A. M. Bordinhon, F. A. L. Fonseca, D. R. Ituassú, R. Roubach & E. A. Ono, 2004. Tolerância de juvenis de pirarucu ao aumento da concentração de amônia em ambiente confinado. Pesquisa Agropecuária Brasileira 39: 513–516.

    Article  Google Scholar 

  • CCME – Canadian Council of Ministers of the Environment, 2010. Ammonia. In Canadian environmental quality guidelines for the protection of aquatic life, 1999 – ammonia. Canadian Council of Ministers of the Environment, Winnipeg, Canada

  • Chew, S. F., J. M. Wilson, Y. K. Ip & D. J. Randall, 2005. Nitrogen excretion and defense against ammonia toxicity. In: Val, A. L., V. M. F. Almeida-Val & D. J. Randall (eds), Fish Physiology: The Physiology of Tropical Fishes, vol. 21, Chapter 8. Academic Press, San Diego: 307–379.

  • Chew, S. F. & Y. K. Ip, 2014. Excretory nitrogen metabolism and defence against ammonia toxicity in air-breathing fishes. Journal of Fish Biology 84: 603–638.

    Article  CAS  PubMed  Google Scholar 

  • CONAMA – Conselho Nacional do Meio Ambiente, 2005. Resolução No 357, de 17 de Março de 2005, pp. 58–65. http://www.mma.gov.br/port/conama/res/res05/res35705.pdf. Accessed on 27 Apr, 2015.

  • Couceiro, S. R., N. Hamada, S. L. Luz, B. R. Forsberg & T. P. Pimentel, 2007. Deforestation and sewage effects on aquatic macroinvertebrates in urban streams in Manaus, Amazonas, Brazil. Hydrobiologia 575: 271–284.

    Article  CAS  Google Scholar 

  • Cunha, H. B. & D. Pascoaloto, 2009. Hidroquímica dos Rios da Amazônia. Manaus – Governo do Estado do Amazonas – Secretaria do Estado da Cultura, Coleção Cadernos da Amazônia.

  • Damato, M. & E. Barbieri, 2011. Determinação da toxicidade aguda de cloreto de amônia para uma espécie de peixe (Hyphessobrycon callistus) indicadora regional. O Mundo da Saúde 35: 401–407.

    Google Scholar 

  • De Boeck, G., C. M. Wood, F. I. Iftikar, V. Matey, G. R. Scott, K. A. Sloman, M. N. P. Silva, V. Almeida-Val & A. L. Val, 2013. Interactions between hypoxia tolerance and food deprivation in Amazonian Oscars, Astronotus ocellatus. Journal of Experimental Biology 216: 4590–4600.

    Article  PubMed  Google Scholar 

  • Dinesh, B., M. Ramesh & R. K. Poopal, 2013. Effect of ammonia on the electrolyte status of an Indian major carp Catla catla. Aquaculture Research 44: 1677–1684.

    CAS  Google Scholar 

  • Duncan, W. P. & M. N. Fernandes, 2010. Physicochemical characterization of the white, black and clear water rivers of the Amazon Basin and its implications on the distribution of freshwater stingrays (Chondrichthyes, Potamotrygonidae). Pan-American Journal of Aquatic Science 5: 454–464.

    Google Scholar 

  • Emerson, K., R. C. Russo, R. E. Lund & R. V. Thurston, 1975. Aqueous ammonia equilibrium calculations: effect of pH and temperature. Journal of the Fisheries Research Board of Canada 32: 2379–2383.

    Article  CAS  Google Scholar 

  • Finney, D. J., 1978. Statistical Methods in Biological Assay, 3rd ed. Charles Griffin & Company, London.

    Google Scholar 

  • Furch, K., 1984. Water chemistry of the Amazon basin: the distribution of chemical elements among freshwaters. the Amazon. Springer, Netherlands: 167–199.

    Chapter  Google Scholar 

  • Graham, J. B., 1997. Air-Breathing Fishes: Evolution, Diversity and Adaptation. Academic Press, San Diego.

    Google Scholar 

  • Graham, J. B., 1999. Comparative aspects of air-breathing fish biology: an agenda for some Neotropical species. In Val, A. L. & V. M. F. Almeida-Val (eds), Biology of Tropical Fishes, Chapter 25. Inpa, Manaus: 317–331.

    Google Scholar 

  • Ip, Y. K. & S. F. Chew, 2010. Ammonia production, excretion, toxicity and defense in fish: A review. Frontiers in Physiology 1: 1–20.

    Article  Google Scholar 

  • Ip, Y. K., S. F. Chew & D. J. Randall, 2001. Ammonia toxicity, tolerance and excretion. In Anderson, P. & P. Wright (eds), Fish physiology: nitrogen excretion, v.20, Chapter 4. Academic Press, Elsevier: 109–148.

    Chapter  Google Scholar 

  • Kwok, K. W. H., K. M. Y. Leung, G. S. G. Lui, V. K. H. Chu, P. K. S. Lam, D. Morritt, L. Maltby, T. C. M. Brock, P. J. Van den Brink, M. St, J. Warne & M. Crane, 2007. Comparison of tropical and temperate freshwater animal species’ acute sensitivities to chemicals: implications for deriving safe extrapolation factors. Integrated Environmental Assessment and Management 3: 49–67.

    Article  CAS  PubMed  Google Scholar 

  • Langeani, F., P. A. Buckup, L. R. Malabarba, L. H. R. Py-Daniel, C. A. S. Lucena, R. S. Rosa, J. A. S. Zuanon, Z. M. S. Lucena, M. R. Britto, O. T. Oyakawa & G. Gomes-Filho, 2009. Peixes de Água Doce. In Rocha, R. M. & W. A. Boeger (eds), Estado da Arte e Perspectivas para a Zoologia no Brasil, Ed. UFPR, Curitiba, Chapter 13: 211–230.

  • Lefevre, S., T. Wang, A. Jensen, N. V. Cong, D. T. T. Huong, N. T. Phuong & M. Bayley, 2014. Air-breathing fishes in aquaculture. What can we learn from physiology? Journal of Fish Biology 84: 705–731.

    Article  CAS  PubMed  Google Scholar 

  • Lévêque, C., T. Oberdorff, D. Paugy, M. J. L. Stiassny & P. A. Tedesco, 2008. Global diversity of fish (Pisces) in freshwater. Hydrobiologia 595: 545–567.

    Article  Google Scholar 

  • Martinez, C. B. R., F., Azevedo & E. U. Winkaler, 2006. Toxicidade e efeitos da amônia em peixes neotropicais. In Cyrino J. E. P.& E. C. Urbinati (Eds), Tópicos Especiais em Biologia Aquática e Aqüicultura. Sociedade Brasileira de Aqüicultura e Biologia Aquática. Jaboticabal – SP: 81–95.

  • Miron, D. S., B. Moraes, A. G. Becker, M. Crestani, R. Spanevello, V. L. Loro & B. Baldisserotto, 2008. Ammonia and pH effects on some metabolic parameters and gill histology of silver catfish, Rhamdia quelen (Heptapteridae). Aquaculture 277: 192–196.

    Article  CAS  Google Scholar 

  • Muusze, B., J. Marcon, G. V. D. Thillart & V. M. F. Almeida-Val, 1998. Hypoxia tolerance of Amazon fish respirometry and energy metabolism of the cichlid Astronotus ocellatus. Comparative Biochemistry and Physiology A 120: 151–156.

    Article  Google Scholar 

  • Nelson, J. A., 2014. Breaking wind to survive: Fishes that breathe air with their gut. Journal of Fish Biology 84: 554–576.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira, S. R., R. T. Y. B. Souza, E. S. S. Nunes, C. S. M. Carvalho, G. C. Menezes, J. L. Marcon, R. Roubach, E. A. Ono & E. G. Affonso, 2008. Tolerance to temperature, pH, ammonia and nitrite in cardinal tetra, Paracheirodon axelrodi, an amazonian ornamental fish. Acta Amazonica 38: 773–780.

    Article  Google Scholar 

  • Piedras, S. R. N., J. L. R. Oliveira, P. R. R. Moraes & A. Bager, 2006. Toxicidade aguda da amônia não ionizada e do nitrito em alevinos de Cichlasoma facetum (Jenyns, 1842). Ciência e agrotecnologia 30: 1008–1012.

    Article  CAS  Google Scholar 

  • Perz, S. G., 2000. The quality of urban environments in the Brazilian Amazon. Social Indicators Research 49: 181–212.

    Article  Google Scholar 

  • Randall, D. J. & T. K. N. Tsui, 2002. Ammonia toxicity in fish. Marine Pollution Bulletin 45: 17–23.

    Article  CAS  PubMed  Google Scholar 

  • Randall, D. J. & Y. K. Ip, 2006. Ammonia as a respiratory gas in water and air-breathing fishes. Respiratory Physiology and Neurobiology 154: 216–225.

    Article  CAS  PubMed  Google Scholar 

  • Robertson, L. M., A. L. Val, V. M. F. Almeida-Val & C. M. Wood, 2015. Ionoregulatory aspects of the osmorespiratory compromise during acute environmental hypoxia in 12 tropical and temperate teleosts. Physiological and Biochemical Zoology 88: 357–370.

    Article  PubMed  Google Scholar 

  • Sprague, J. B., 1969. Measurement of pollutant toxicity to fish. I. Bioassay methods for acute toxicity. Water Research 5: 245–266.

    Article  Google Scholar 

  • Tomasso, J. R., C. A. Goudie, B. A. Simco & K. B. Davis, 1980. Effects of environmental pH and calcium on ammonia toxicity in channel catfish. Transactions of the American Fisheries Society 109: 229–234.

    Article  CAS  Google Scholar 

  • U.S. EPA – United States Environmental Protection Agency, 1999. Update of ambient water quality criteria for ammonia. EPA-822-R-99-014. EPA, Washington.

  • U.S. EPA – United States Environmental Protection Agency, 2013. Aquatic life ambient water quality criteria for ammonia- freshwater. EPA-822-R-13-001. EPA, Washington.

  • Val, A. L. & V. M. F. Almeida-Val, 1995. Fishes of the Amazon and their environment. Springer, Berlin.

    Book  Google Scholar 

  • Verdouw, H., C. J. A. van Echteld & E. M. J. Dekkers, 1978. Ammonia determination based on indophenols formation with sodium salicylate. Water Research 12: 399–402.

    Article  CAS  Google Scholar 

  • Wajsbrot, N., A. Gasith, M. D. Krom & D. M. Popper, 1991. Acute toxicity of ammonia to juvenile gilthead seabream Sparus aurata under reduced oxygen levels. Aquaculture 92: 277–288.

    Article  CAS  Google Scholar 

  • Walsh, P. J., C. M. Veauvy, D. M. McDonald, M. E. Pamenter, L. T. Buck & M. P. Wilkie, 2007. Piscine insights into comparisons of anoxia tolerance, ammonia toxicity, stroke and hepatic encephalopathy. Comparative Biochemistry and Physiology A 147: 332–343.

    Article  Google Scholar 

  • Wee, N. L. J., Y. Y. M. Tng, H. T. Cheng, S. M. L. Lee, S. F. Chew & Y. K. Ip, 2007. Ammonia toxicity and tolerance in the brain of the African sharptooth catfish, Clarias gariepinus. Aquatic Toxicology 82: 204–213.

    Article  CAS  PubMed  Google Scholar 

  • Wilkie, M. P., 1997. Mechanism of ammonia excretion across fish gills. Comparative Biochemistry and Physiology A 118: 39–50.

    Article  Google Scholar 

  • Wilkie, M. P., 2002. Ammonia excretion and urea handling by fish gills: Present understanding and future research challenges. Journal of Experimental Zoology 293: 284–301.

    Article  CAS  PubMed  Google Scholar 

  • Wood, C. M., M. Kajimura, K. A. Sloman, G. R. Scott, P. J. Walsh, V. M. F. Almeida-Val & A. L. Val, 2007. Rapid regulation of Na+ fluxes and ammonia excretion in response to acute environmental hypoxia in the Amazonian oscar, Astronotus ocellatus. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 292: R2048–R2058.

    Article  CAS  PubMed  Google Scholar 

  • Wood, C. M., F. I. Iftikar, G. R. Scott, G. De Boeck, K. A. Sloman, V. Matey, F. X. Valdez Domingos, R. M. Duarte, V. M. F. Almeida-Val & A. L. Val, 2009. Regulation of gill transcellular permeability and renal function during acute hypoxia in the Amazonian oscar (Astronotus ocellatus): new angles to the osmorespiratory compromise. The Journal of Experimental Biology 212: 1949–1964.

    Article  CAS  PubMed  Google Scholar 

  • Wood, C. M., L. M. Robertson, O. E. Johannsson & A. L. Val, 2014. Mechanisms of Na+ uptake, ammonia excretion, and their potential linkage in native Rio Negro tetras (Paracheirodon axelrodi, Hemigrammus rhodostomus, and Moenkhausia diktyota). The Journal of Comparative Physiology B 184: 877–890.

    Article  CAS  Google Scholar 

  • Zall, D. M., D. Fisher & M. Q. Garner, 1956. Photometric determination of chloride in water. Analytical Chemistry 28: 1665–1668.

    Article  CAS  Google Scholar 

  • Zhang, L., D. M. Xiong, B. Li, Z. G. Zhao, W. Fang, K. Yang & Q. X. Fan, 2012. Toxicity of ammonia and nitrite to yellow catfish (Pelteobagrus fulvidraco). Journal of Applied Ichthyology 28: 82–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financing by INCT-ADAPTA (CNPq No. 573976/2008-2/FAPEAM 3159/08) and Science without Borders (CNPq—CsF No. 400311/2012-7) awarded to A. L. V. and C. M. W. with post-doctoral fellowships awarded to L. R. S-B (CNPq—CsF No. 151446/2014-8). The authors also thank Dr. Aleicia Holland for her contributions to the SSD analyses, Dr. Tyler Linton for advice on U.S. EPA procedures, and Dr Jansen Zuanon for species identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana R. Souza-Bastos.

Additional information

Guest editors: Adalberto L. Val, Gudrun De Boeck & Sidinei M. Thomaz / Adaptation of Aquatic Biota of the Amazon

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza-Bastos, L.R., Val, A.L. & Wood, C.M. Are Amazonian fish more sensitive to ammonia? Toxicity of ammonia to eleven native species. Hydrobiologia 789, 143–155 (2017). https://doi.org/10.1007/s10750-015-2623-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2623-4

Keywords

Navigation