Skip to main content

Advertisement

Log in

Effects of a harmful algal bloom on the community ecology, movements and spatial distributions of fishes in a microtidal estuary

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Harmful algal blooms can adversely affect fish communities, though their impacts are highly context-dependent and typically differ between fish species. Various approaches, comprising univariate and multivariate analyses and multimetric Fish Community Indices (FCI), were employed to characterise the perceived impacts of a Karlodinium veneficum bloom on the fish communities and ecological condition of the Swan Canning Estuary, Western Australia. The combined evidence suggests that a large proportion of the more mobile fish species in the offshore waters of the bloom-affected area relocated to other regions during the bloom. This was indicated by marked declines in mean species richness, catch rates and FCI scores in the bloom region but concomitant increases in these characteristics in more distal regions, and by pronounced and atypical shifts in the pattern of inter-regional similarities in fish community composition during the bloom. The lack of any significant changes among the nearshore fish communities revealed that bloom impacts were less severe there than in deeper, offshore waters. Nearshore habitats, which generally are in better ecological condition than adjacent offshore waters in this system, may provide refuges for fish during algal blooms and other perturbations, mirroring similar observations of fish avoidance responses to such stressors in estuaries worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acharyya, T., V. V. S. S. Sarma, B. Sridevi, V. Venkataramana, M. D. Bharathi, S. A. Naidu, B. S. K. Kumar, V. R. Prasad, D. Bandyopadhyay, N. P. C. Reddy & M. D. Kumar, 2012. Reduced river discharge intensifies phytoplankton bloom in Godavari estuary, India. Marine Chemistry 132–133: 15–22.

    Article  Google Scholar 

  • Adolf, J. E., T. R. Bachvaroff, J. R. Deeds, A. Begum, W. Hosja, T. Reitsema, P. Ringeltaube, M. Robb & A. R. Place, 2005. Ichthyotoxic Karlodinium micrum in the Swan River Estuary (Western Australia): an emerging threat in a highly eutrophic estuarine system. 3rd Symposium on Harmful Algae in the US, Asilomar, California.

  • Adolf, J. E., T. R. Bachvaroff, H. A. Bowers, J. R. Deeds & A. R. Place, 2015. Ichthyotoxic Karlodinium veneficum in the Upper Swan River estuary (Western Australia): synergistic effects of karlotoxin and hypoxia leading to a fish kill. Harmful Algae (in press).

  • Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  • Anderson, D. M., A. D. Cembella & G. M. Hallegraeff, 2012. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring and management. Annual Reviews in Marine Science 4: 143–176.

    Article  Google Scholar 

  • Anderson, D. M., P. M. Glibert & J. M. Burkholder, 2002. Harmful algal blooms and eutrophication: nutrient sources, composition and consequences. Estuaries 25: 704–726.

    Article  Google Scholar 

  • Anderson, D. M., J. M. Burkholder, W. P. Cochlan, P. M. Glibert, C. J. Gobler, C. A. Heil, R. M. Kudela, M. L. Parsons, J. E. J. Rensel, D. W. Townsend, V. L. Trainer & G. A. Vargo, 2008a. Harmful algal blooms and eutrophication: examining linkages from selected coastal regions of the United States. Harmful Algae 8: 39–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008b. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth.

    Google Scholar 

  • Baird, D., R. R. Christian, C. Peterson & G. A. Johnson, 2004. Consequences of hypoxia on estuarine ecosystem function: energy diversion from consumers to microbes. Ecological Applications 14: 805–822.

    Article  Google Scholar 

  • Borja, A., A. Basset, S. Bricker, J.-C. Dauvin, M. Elliott, T. Harrison, J.-C. Marques, S. Weisberg & R. West, 2012. Classifying ecological quality and integrity of estuaries. In Wolanski, E. & D. McLusky (eds), Treatise on Estuarine and Coastal Science. Academic Press, Waltham: 125–162.

    Google Scholar 

  • Brady, D. C. & T. E. Targett, 2013. Movement of juvenile weakfish Cynoscion regalis and spot Leiostomus xanthurus in relation to diel-cycling hypoxia in an estuarine tidal tributary. Marine Ecology Progress Series 491: 199–219.

    Article  CAS  Google Scholar 

  • Breitburg, D. L., 2002. Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries. Estuaries and Coasts 25: 767–781.

    Article  Google Scholar 

  • Burkholder, J. M. & H. B. Glasgow, 2001. History of toxic Pfiesteria in North Carolina estuaries from 1991 to the present. Bioscience 51: 827–841.

    Article  Google Scholar 

  • Burkholder, J. M., E. J. Noga, C. H. Hobbs & H. B. Glasgow, 1992. New ‘phantom’ dinoflagellate is the causative agent of major estuarine fish kills. Nature 358: 407–410.

    Article  CAS  PubMed  Google Scholar 

  • Chan, T. U., D. P. Hamilton, B. J. Robson, B. R. Hodges & C. Dallimore, 2002. Impacts of hydrological changes on phytoplankton succession in the Swan River, Western Australia. Estuaries 25: 1406–1415.

    Article  Google Scholar 

  • Clarke, K. R. & M. Ainsworth, 1993. A method of linking multivariate community structure to environmental variables. Marine Ecology Progress Series 92: 205–219.

    Article  Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth.

    Google Scholar 

  • Clarke, K. R. & R. H. Green, 1988. Statistical design and analysis for a ‘biological effects’ study. Marine Ecology Progress Series 46: 213–226.

    Article  Google Scholar 

  • Clarke, K. R. & R. M. Warwick, 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed. PRIMER-E, Plymouth.

    Google Scholar 

  • Clarke, K. R., M. G. Chapman, P. J. Somerfield & H. R. Needham, 2006a. Dispersion-based weighting of species counts in assemblage analyses. Marine Ecology Progress Series 320: 11–27.

    Article  Google Scholar 

  • Clarke, K. R., P. J. Somerfield, L. Airoldi & R. M. Warwick, 2006b. Exploring interactions by second-stage community analyses. Journal of Experimental Marine Biology and Ecology 338: 179–192.

    Article  Google Scholar 

  • Clarke, K. R., P. J. Somerfield & M. G. Chapman, 2006c. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded assemblages. Journal of Experimental Marine Biology and Ecology 330: 55–80.

    Article  Google Scholar 

  • Clarke, K. R., P. J. Somerfield & R. N. Gorley, 2008. Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. Journal of Experimental Marine Biology and Ecology 366: 56–69.

    Article  Google Scholar 

  • Clarke, K. R., J. R. Tweedley & F. J. Valesini, 2013. Simple shade plots aid better long-term choices of data pre-treatment in multivariate assemblage studies. Journal of the Marine Biological Association of the United Kingdom 94: 1–16.

    Article  Google Scholar 

  • Commonwealth of Australia, 2002. Australian Catchment, River and Estuary Assessment 2002, Vol. 1. National Land and Water Resources Audit, Canberra.

    Google Scholar 

  • Cosgrove, J., S. Hoeksema & A. Place, 2015. Ichthyotoxic Karlodinium cf. veneficum in the Swan-Canning Estuarine system (Western Australia): towards management through understanding. Proceedings of the 16th International Conference on Harmful Algae, Wellington, New Zealand, 2014.

  • Cottingham, A., S. A. Hesp, N. G. Hall, M. R. Hipsey & I. C. Potter, 2014. Changes in condition, growth and maturation of Acanthopagrus butcheri (Sparidae) in an estuary reflect the deleterious effects of environmental degradation. Estuarine, Coastal and Shelf Science 149: 109–119.

    Article  Google Scholar 

  • Cox, T. F. & M. A. A. Cox, 2001. Multidimensional Scaling, 2nd ed. Chapman and Hall, London.

    Google Scholar 

  • Craig, J. K., 2012. Aggregation on the edge: effects of hypoxia avoidance on the spatial distribution of brown shrimp and demersal fishes in the Northern Gulf of Mexico. Marine Ecology Progress Series 445: 75–95.

    Article  CAS  Google Scholar 

  • Craig, J. K. & L. B. Crowder, 2005. Hypoxia-induced habitat shifts and energetic consequences in Atlantic croaker and brown shrimp on the Gulf of Mexico shelf. Marine Ecology Progress Series 294: 79–94.

    Article  Google Scholar 

  • CSIRO – Commonwealth Scientific and Industrial Research Organisation, 2007. Climate change in Australia – Technical Report 2007 [available on internet at http://www.climatechangeinaustralia.gov.au; Accessed 20 June 2014].

  • Deeds, J. R., D. E. Terlizzi, J. E. Adolf, D. K. Stoecker & A. R. Place, 2002. Toxic activity from cultures of Karlodinium micrum (=Gyrodinium galatheanum) (Dinophyceae) - a dinoflagellate associated with fish mortalities in an estuarine aquaculture facility. Harmful Algae 1: 169–189.

    Article  CAS  Google Scholar 

  • Eby, L. A. & L. B. Crowder, 2002. Hypoxia-based habitat compression in the Neuse River estuary: context-dependent shifts in behavioral avoidance thresholds. Canadian Journal of Fisheries and Aquatic Sciences 59: 952–965.

    Article  Google Scholar 

  • Eby, L. A. & L. B. Crowder, 2004. Effects of hypoxic disturbances on an estuarine nekton assemblage across multiple scales. Estuaries 27: 342–351.

    Article  Google Scholar 

  • Eby, L. A., L. B. Crowder, C. M. McClellan, C. H. Peterson & M. J. Powers, 2005. Habitat degradation from intermittent hypoxia: impacts on demersal fishes. Marine Ecology Progress Series 291: 249–261.

    Article  Google Scholar 

  • Fu, F. X., A. O. Tatters & D. A. Hutchins, 2012. Global change and the future of harmful algal blooms in the ocean. Marine Ecology Progress Series 470: 207–233.

    Article  CAS  Google Scholar 

  • Gerritse, R. G., P. J. Wallbrink & A. S. Murray, 1998. Accumulation of phosphorous and heavy metals in the Swan-Canning Estuary, Western Australia. Estuarine, Coastal and Shelf Science 47: 165–179.

    Article  CAS  Google Scholar 

  • Gibson, G. R., M. L. Bowman, J. Gerritsen & B. D. Snyder, 2000. Estuarine and coastal marine waters: bioassessment and biocriteria technical guidance. USEPA report 822-B-00-024, Office of Water, Washington DC.

  • Glasgow, H. B. & J. M. Burkholder, 2000. Water quality trends and management implications for a five-year study of a eutrophic estuary. Ecological Applications 10: 1024–1046.

    Article  Google Scholar 

  • Glibert, P. M., R. Magnien, M. W. Lomas, J. Alexander, C. Fan, E. Haramoto, M. Trice & T. M. Kana, 2001. Harmful algal blooms in the Chesapeake and coastal bays of Maryland, USA: comparison of 1997, 1998, and 1999 events. Estuaries 24: 875–883.

    Article  CAS  Google Scholar 

  • Glibert, P. M., D. M. Anderson, P. Gention, E. Graneli & K. G. Sellner, 2005. The global, complex phenomena of harmful algal blooms. Oceanography 18: 130–141.

    Google Scholar 

  • Hallegraeff, G., B. Mooney, K. Evans & W. Hosja, 2011. What triggers fish-killing Karlodinium veneficum dinoflagellate blooms in the Swan Canning River system? Swan Canning Research and Innovation Program Final Report, SRT Project no. RSG09TAS01. University of Tasmania, Hobart.

  • Hallett, C. S., 2010. The development and validation of an estuarine health index using fish community characteristics. Ph.D. thesis, Murdoch University, Perth.

  • Hallett, C. S., 2014. Quantile-based grading improves the effectiveness of a multimetric index as a tool for communicating estuarine condition. Ecological Indicators 39: 84–87.

    Article  Google Scholar 

  • Hallett, C. S. & N. G. Hall, 2012. Equivalence factors for standardising catch data across multiple beach seine nets to account for differences in relative bias. Estuarine, Coastal and Shelf Science 104–105: 114–122.

    Article  Google Scholar 

  • Hallett, C. S., F. J. Valesini & K. R. Clarke, 2012a. A method for selecting health index metrics in the absence of independent measures of ecological condition. Ecological Indicators 19: 240–252.

    Article  CAS  Google Scholar 

  • Hallett, C. S., F. J. Valesini, K. R. Clarke, S. A. Hesp & S. D. Hoeksema, 2012b. Development and validation of a fish-based, multimetric index for assessing the ecological health of Western Australian estuaries. Estuarine, Coastal and Shelf Science 104–105: 102–113.

    Article  Google Scholar 

  • Harper, D., 1992. Eutrophication of Freshwaters - Principles, Problems and Restoration. Chapman and Hall, New York.

    Book  Google Scholar 

  • Hoeksema, S. D. & I. C. Potter, 2006. Diel, seasonal, regional and annual variations in the characteristics of the ichthyofauna of the upper reaches of a large Australian microtidal estuary. Estuarine, Coastal and Shelf Science 67: 503–520.

    Article  Google Scholar 

  • Horner Rosser, S. M. J. & P. A. Thompson, 2001. Phytoplankton of the Swan-Canning Estuary: a comparison of nitrogen uptake by different bloom assemblages. Hydrological Processes 15: 2579–2594.

    Article  Google Scholar 

  • Hosja W. & D. Deeley, 1994. Harmful phytoplankton surveillance in Western Australia. Waterways Commission Report No. 43. Waterways Commission, Perth.

  • Jakowyna, B., R. Donohue & M. Robb, 2000. River Science 6 - The Delivery of Nutrients to the Swan and Canning Rivers has Changed Over Time. Water and Rivers Commission, Perth.

    Google Scholar 

  • Karr, J. R., 1981. Assessment of biotic integrity using fish communities. Fisheries 6: 21–27.

    Article  Google Scholar 

  • Kempton, J. W., A. J. Lewitus, J. R. Deeds, J. M. Law & A. R. Place, 2002. Toxicity of Karlodinium micrum (Dinophyceae) associated with a fish kill in a South Carolina brackish retention pond. Harmful Algae 1: 233–241.

    Article  CAS  Google Scholar 

  • Kidd, A. & R. Srdarev, 2003. Integrated phytoplankton status: Swan River Estuary sites 1–9, 9th June 2003. Phytoplankton Report. Phytoplankton Ecology Unit, Department of Environment, Perth.

  • Kidwell, D. M., A. J. Lewitus, E. B. Jewett, S. Brandt & D. M. Mason, 2009. Ecological impacts of hypoxia on living resources. Journal of Experimental Marine Biology and Ecology 381: S1–S3.

    Article  Google Scholar 

  • Kruskal, J. B., 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29: 1–27.

    Article  Google Scholar 

  • Lamberth, S. J., G. M. Branch & B. M. Clark, 2010. Estuarine refugia and fish responses to a large, anoxic, hydrogen sulphide “black tide” event in the adjacent marine environment. Estuarine, Coastal and Shelf Science 86: 203–215.

    Article  CAS  Google Scholar 

  • Landsberg, J. H., 2002. The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science 10: 113–390.

    Article  Google Scholar 

  • Levin, P. S. & M. E. Hay, 2003. Selection of estuarine habitats by juvenile gags in experimental mesocosms. Transactions of the American Fisheries Society 132: 76–83.

    Article  Google Scholar 

  • Loneragan, N. R. & I. C. Potter, 1990. Factors influencing community structure and distribution of different life-cycle categories of fishes in shallow waters of a large Australian estuary. Marine Biology 106: 25–37.

    Article  Google Scholar 

  • Loneragan, N. R., I. C. Potter & R. C. J. Lenanton, 1989. Influence of site, season and year on contributions made by marine, estuarine, diadromous and freshwater species to the fish fauna of a temperate Australian estuary. Marine Biology 103: 461–479.

    Article  Google Scholar 

  • Mooney, B. D., A. R. Place & G. M. Hallegraeff, 2010. Ichthyotoxicity of four species of gymnodinioid dinoflagellates (Kareniaceae, Dinophyta) and purified karlotoxins to larval sheepshead minnow. Harmful Algae 9: 557–562.

    Article  Google Scholar 

  • Paerl, H. W., J. L. Pinckney, J. M. Fear & B. L. Peierls, 1998. Ecosystem responses to internal and watershed organic matter loading: consequences for hypoxia in the eutrophying Neuse River Estuary, North Carolina, USA. Marine Ecology Progress Series 166: 17–25.

    Article  CAS  Google Scholar 

  • Pérez-Domínguez, R., S. Maci, A. Courrat, M. Lepage, A. Borja, A. Uriarte, J. M. Neto, H. Cabral, V. St. Raykov, A. Franco, M. C. Alvarez & M. Elliott, 2012. Current developments on fish-based indices to assess ecological-quality status of estuaries and lagoons. Ecological Indicators 23: 34–45.

    Article  Google Scholar 

  • Pihl, L., S. P. Baden & R. J. Diaz, 1991. Effects of periodic hypoxia on distribution of demersal fish and crustaceans. Marine Biology 108: 349–360.

    Article  Google Scholar 

  • Place, A. R., H. A. Bowers, T. R. Bachvaroff, J. E. Adolf, J. R. Deeds & J. Sheng, 2012. Karlodinium veneficum - the little dinoflagellate with a big bite. Harmful Algae 14: 179–195.

    Article  CAS  Google Scholar 

  • Portnoy, J. W., 1991. Summer oxygen depletion in a diked New England estuary. Estuaries 14: 122–129.

    Article  CAS  Google Scholar 

  • Potter, I. C., N. R. Loneragan, R. C. J. Lenanton & P. J. Chrystal, 1983. Blue-green algae and fish population changes in a eutrophic estuary. Marine Pollution Bulletin 14: 228–233.

    Article  Google Scholar 

  • Rate, A., A. E. Robertson & A. T. Borg, 2000. Distribution of heavy metals in near-shore sediments of the Swan River Estuary, Western Australia. Water, Air and Soil Pollution 124: 155–168.

    Article  CAS  Google Scholar 

  • Shepard, R. N., 1962. The analysis of proximities: multidimensional scaling with an unknown distance function. Psychometrika 27: 125–140.

    Article  Google Scholar 

  • Smith, V. H., 2003. Eutrophication of freshwater and coastal marine ecosystems: a global problem. Environmental Science and Pollution Research International 10: 126–139.

    Article  CAS  PubMed  Google Scholar 

  • Somerfield, P. J. & K. R. Clarke, 2013. Inverse analysis in non-parametric multivariate analyses: distinguishing groups of associated species which covary coherently across samples. Journal of Experimental Marine Biology and Ecology 449: 261–273.

    Article  Google Scholar 

  • SRT – Swan River Trust, 2009. Swan Canning Water Quality Improvement Plan. Swan River Trust, Perth [available on internet at http://www.swanrivertrust.wa.gov.au; Accessed 25 Nov 2014].

  • Szedlmayer, S. T. & K. W. Able, 1996. Patterns of seasonal availability and habitat use by fishes and decapod crustaceans in a southern New Jersey estuary. Estuaries 19: 697–709.

    Article  Google Scholar 

  • Thompson, P. A., 1998. Spatial and temporal patterns of factors influencing phytoplankton in a salt wedge estuary, the Swan River, Western Australia. Estuaries 21: 801–817.

    Article  CAS  Google Scholar 

  • Thompson, P. A. & W. Hosja, 1996. Nutrient limitation of phytoplankton in the upper Swan River Estuary. Marine and Freshwater Research 47: 659–667.

    Article  CAS  Google Scholar 

  • Twomey, L. & J. John, 2001. Effects of rainfall and salt-wedge movement on phytoplankton succession in the Swan-Canning Estuary, Western Australia. Hydrological Processes 15: 2655–2671.

    Article  Google Scholar 

  • Tyler, R. M., D. C. Brady & T. E. Targett, 2009. Temporal and spatial dynamics of diel-cycling hypoxia in estuarine tributaries. Estuaries and Coasts 32: 123–145.

    Article  CAS  Google Scholar 

  • Wannamaker, C. M. & J. A. Rice, 2000. Effects of hypoxia on movements and behaviour of selected estuarine organisms from the southeastern United States. Journal of Experimental Marine Biology and Ecology 249: 145–163.

    Article  PubMed  Google Scholar 

  • Whitfield, A. K. & M. Elliott, 2002. Fishes as indicators of environmental and ecological change within estuaries: a review of progress and some suggestions for the future. Journal of Fish Biology 61(Suppl A): 229–250.

    Article  Google Scholar 

  • Whittaker, R. H., 1952. A study of summer foliage insect communities in the Great Smoky Mountains. Ecological Monographs 22: 1–44.

    Article  Google Scholar 

  • Wu, R. S. S., 2002. Hypoxia: from molecular responses to ecosystem responses. Marine Pollution Bulletin 45: 35–45.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., S. A. Ludsin, D. M. Mason, A. T. Adamack, S. B. Brandt, X. Zhang, D. G. Kimmel, M. R. Roman & W. C. Boicourt, 2010. Hypoxia-driven changes in the behaviour and spatial distribution of pelagic fish and mesozooplankton in the northern Gulf of Mexico. Journal of Experimental Marine Biology and Ecology 381: S80–S91.

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due in particular to Ray Gorley of PRIMER-E for his coding of the shade plots and modified nMDS algorithms in the developmental PRIMER software. Gratitude is expressed to the WA Department of Fisheries and Murdoch University for funding this research. KRC acknowledges his honorary adjunct and fellowship positions at Murdoch University and Plymouth Marine Laboratory. This work was carried out under Murdoch University animal ethics permit number W1006/03 and under permits from the WA Department of Fisheries and the WA Department of Environment and Conservation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris S. Hallett.

Additional information

Handling editor: Gideon Gal

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hallett, C.S., Valesini, F.J., Clarke, K.R. et al. Effects of a harmful algal bloom on the community ecology, movements and spatial distributions of fishes in a microtidal estuary. Hydrobiologia 763, 267–284 (2016). https://doi.org/10.1007/s10750-015-2383-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2383-1

Keywords

Navigation