Skip to main content
Log in

Phytoplankton co-limitation by nitrogen and phosphorus in a shallow reservoir: progressing from the phosphorus limitation paradigm

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Phosphorus (P) limitation has been regarded as the rule in freshwater systems and the basis for phytoplankton growth management. We hypothesised that P would be the limiting nutrient for phytoplankton growth in Grahamstown Dam, a shallow, mesotrophic reservoir, across different seasons and on different experimental time scales. Seven fully factorial microcosm assays with additions of nitrogen (N) and P were conducted in situ during different seasons. The influence of longer experimental duration was examined in two 18-day mesocosm assays. Additions of N and P in combination evoked significantly higher phytoplankton biomass and biovolumes of individual algal genera compared with controls and other treatments in both types of experiment. There were some significant responses to P additions in the microcosm assays in winter. Some genera first responded to combined P and N addition and then to P only addition during the mesocoms assays. Our results show that P was not the limiting nutrient across all seasons but that phytoplankton was mostly co-limited by N and P. A longer experimental time scale did not change this outcome at the biomass level. This implies that input of N as well as of P should be considered in the management of phytoplankton growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • APHA (ed.). 1995. Standard Methods for the Examination of Water and Wastewater, 19th edn. American Public Health Association/American Water Works Association/Water Pollution Control Federation, Washington, DC.

  • Bergström, A. K., A. Jonsson & M. Jansson, 2008. Phytoplankton responses to nitrogen and phosphorus enrichment in unproductive Swedish lakes along a gradient of atmospheric nitrogen deposition. Aquatic Biology 4: 55–64.

    Article  Google Scholar 

  • Bowling, L. C., 1994. Occurrence and possible causes of a severe cyanobacterial bloom in Lake Cargelligo, New South Wales. Australian Journal of Marine and Freshwater Research 45: 737–745.

    Article  CAS  Google Scholar 

  • Burch, M. D., F. L. Harvey, P. D. Baker & G. Jones, 2006. National protocol for the monitoring of cyanobacteria and their toxins in surface fresh waters Draft V6.0.

  • Burger, D. F., D. P. Hamilton, J. A. Hall & E. F. Ryan, 2007. Phytoplankton nutrient limitation in a polymictic eutrophic lake: community versus species-specific responses. Archiv für Hydrobiologie 169(1): 57–68.

    Article  CAS  Google Scholar 

  • Carignan, R. & D. Planas, 1994. Recognition of nutrient and light limitation in turbid mixed layers: three approaches compared in the Paraná floodplain (Argentina). Limnology and Oceanography 39(3): 580–596.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., 1996. Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77(3): 677–680.

    Article  Google Scholar 

  • Cole, B. & B. Williams, 2011. Grahamstown Dam Water Quality & Aquatic Ecological Functioning. A Compilation of Scientific and Adaptive Management Studies. Hunter Water Corporation, Newcastle, NSW.

  • Danger, M., T. Daufresne, F. Lucas, S. Pissard & G. Lacroix, 2008. Does Liebig’s law of the minimum scale up from species to communities? Oikos 117(11): 1741–1751.

    Article  Google Scholar 

  • De Tezanos Pinto, P. & E. Litchman, 2010. Interactive effects of N:P ratios and light on nitrogen-fixer abundance. Oikos 119: 567–575.

    Article  Google Scholar 

  • Dzialowski, A. R., S. H. Wang, N. C. Lim, W. W. Spotts & D. G. Huggins, 2005. Nutrient limitation of phytoplankton growth in central plains reservoirs, USA. Journal of Plankton Research 27(6): 587–595.

    Article  CAS  Google Scholar 

  • Eixler, S., U. Karstens & U. Selig, 2006. Phosphorus storage in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cells and its dependence on phosphate supply. Phycologia 45: 53–60.

    Article  Google Scholar 

  • Elser, J. J., M. E. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin & J. E. Smith, 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10: 1135–1142.

    Article  PubMed  Google Scholar 

  • Entwistle, T. J., J. A. Sonneman & S. H. Lewis, 1997. Freshwater Algae in Australia. A Guide to Conspicuous Genera. Sainty and Associates, Sydney.

    Google Scholar 

  • Gregor, J. & B. Maršálek, 2004. Freshwater phytoplankton quantification by chlorophyll a: a comparative study of in vitro, in vivo and in situ methods. Water Research 38: 517–522.

    Article  CAS  PubMed  Google Scholar 

  • Harpole, W. S., J. T. Ngai, E. E. Cleland, E. W. Seabloom, E. T. Borer, M. E. Bracken, J. J. Elser, D. S. Gruner, H. Hillebrand, J. B. Shurin & J. E. Smith, 2011. Nutrient co-limitation of primary producer communities. Ecology Letters 14: 852–862.

    Article  PubMed  Google Scholar 

  • Hyenstrand, P., E. Rydin, M. Gunnerhed, J. Linder & P. Blomqvist, 2001. Response of the cyanobacterium Gloeotrichia echinulata to iron and boron additions – an experiment from Lake Erken. Freshwater Biology 46: 735–741.

    Article  CAS  Google Scholar 

  • James, C., J. Fisher & B. Moss, 2003. Nitrogen driven lakes: the Shropshire and Cheshire Meres? Archiv für Hydrobiologie 158: 249–266.

    Article  CAS  Google Scholar 

  • Jeppesen, E., M. Søndergaard, J. P. Jensen, K. E. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. T. Dokulil, B. Foy, D. Gerdeaux, S. E. Hampton, S. Hilt, K. Kangur, J. Kohler, E. H. H. R. Lammens, T. L. Lauridsen, M. Manca, M. R. Miracle, B. Moss, P. Noges, G. Persson, G. Phillips, R. Portielje, S. Romo, C. L. Schelske, D. Straile, I. Tatrai, E. Willén & M. Winder, 2005. Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771

    Article  CAS  Google Scholar 

  • Lewis, W. M. & W. A. Wurtsbaugh, 2008. Control of lacustrine phytoplankton by nutrients: erosion of the phosphorus paradigm. Interational Review of Hydrobiology 93(4): 446–465.

    Article  CAS  Google Scholar 

  • Litchman, E., 2000. Growth rates of phytoplankton under fluctuating light. Freshwater Biology 44: 223–235.

    Article  Google Scholar 

  • Lürling, M., F. Eshetu, E. J. Faassen, S. Kosten, V. L. M. Huszar, 2013. Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshwater Biology 58(3): 552–559.

    Article  Google Scholar 

  • Moon, J. B. & H. J. Carrick, 2007. Seasonal variation of phytoplankton nutrient limitation in Lake Erie. Aquatic Microbial Ecology 48: 61–71.

    Article  Google Scholar 

  • Ogbebo, F. E., M. S. Evans, M. J. Waiser, V. P. Tumber & J. J. Keating, 2009. Nutrient limitation of phytoplankton growth in Arctic lakes of the lower Mackenzie River Basin, northern Canada. Canadian Journal of Fisheries and Aquatic Sciences 66(2): 247–260.

    Article  CAS  Google Scholar 

  • Olenina, I., S. Hajdu, L. Edler, A. Andersson, N. Wasmund, S. Busch, J. Göbel, S. Gromisz, S. Huseby, M. Huttunen, A. Jaanus, P. Kokkonen, I. Ledaine & E. Niemkiewicz, 2005. Biovolumes and size-classes of phytoplankton in the Baltic Sea. HELCOM Baltic Sea Environment Proceedings 106: 1–144.

    Google Scholar 

  • Piehler, M. F., J. Dyble, P. H. Moisander, A. D. Chapman, J. Hendrickson & H. W. Paerl, 2009. Interactions between nitrogen dynamics and the phytoplankton community in Lake George, Florida, USA. Lake and Reservoir Management 25: 1–14.

    Article  Google Scholar 

  • Prescott, G. W., 1978. How to Know the Freshwater Algae, 3rd edn. Wm.C. Brown Company Publishers, Dubuque, IA.

    Google Scholar 

  • Qin, B., G. Zhu, G. Gao, Y. Zhang, W. Li, H. W. Paerl & W. W. Carmichael, 2010. A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. Environmental Management 45: 105–112.

    Article  PubMed  Google Scholar 

  • Quiblier, C., C. Leboulanger, S. Sané & P. Dufour, 2008. Phytoplankton growth control and risk of cyanobacterial blooms in the lower senegal river delta region. Water Research 42: 1023–1034.

    Article  CAS  PubMed  Google Scholar 

  • Saito, M. A., T. J. Goepfert & J. T. Ritt, 2008. Some thoughts on the concept of colimitation: three definitions and the importance of bioavailability. Limnology and Oceanography 53(1): 276–290.

    Article  CAS  Google Scholar 

  • Schabhüttl, S., P. Hingsamer, G. Weigelhofer, T. Hein, A. Weigert & M. Striebel, 2013. Temperature and species richness effects in phytoplankton communities. Oecologia 171: 527–536.

    Article  PubMed Central  PubMed  Google Scholar 

  • Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes. Science 195(4275): 260–262.

    Article  CAS  PubMed  Google Scholar 

  • Schindler, D. W., 1998. Replication versus realism: need for ecosystem-scale experiments. Ecosystems 1: 323–334.

    Article  Google Scholar 

  • Schindler, D. W., R. E. Hecky, D. L. Findlay, M. P. Stainton, B. R. Parker, M. J. Paterson, K. G. Beaty, M. Lyng & S. E. M. Kasian, 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences of the United States of America 105(32): 11254–11258.

    Article  CAS  Google Scholar 

  • Spivak, A. C., M. J. Vanni & E. M. Mette, 2011. Moving on up: can results from simple aquatic mesocosm experiments be applied across broad spatial scales? Freshwater Biology 56: 279–291.

    Article  Google Scholar 

  • Sterner, R. W., 2008. On the phosphorus limitation paradigm for lakes. International Review of Hydrobiology 93(4–5): 433–445.

    Article  CAS  Google Scholar 

  • Streble, H. & D. Krauter, 2008. Das Leben im Wassertropfen, 10th edn. Franckh-Kosmos Verlags-GmbH & Co. KG, Stuttgart.

    Google Scholar 

  • Vrede, T., A. Ballantyne, C. Mille-Lindblom, G. Algesten, C. Gudasz, S. Lindahl & A. K. Brunberg, 2009. Effects of N:P loading ratios on phytoplankton community composition, primary production and N fixation in a eutrophic lake. Freshwater Biology 54: 331–344.

    Article  CAS  Google Scholar 

  • Willén, E., 2001. Phytoplankton and water quality characterization: experiences from the Swedish Large Lakes Mälaren, Hjälmaren, Vättern and Vänern. Ambio 30: 529–538.

    PubMed  Google Scholar 

  • Xu, S., B. Huang, Z. B. Wei, J. Luo, A. J. Miao & L.-Y.Yang, 2013. Seasonal variation of phytoplankton nutrient limitation in Lake Taihu, China: a monthly study from year 2011 to 2012. Ecotoxicology and Environmental Safety 94: 190–196.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Hunter Water for funding this project under the Grahamstown Dam Adaptive Management Strategy, in particular Bruce Cole for management of the project and Ian Graham, Stuart Bailey, Jim Carter, Greg Mason and Paul for their help with boat operations and sampling. Further, we are grateful for the assistance of James Hitchcock and Martin Pfeil in the field and we owe Dr Darren Baldwin thanks for useful comments on this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Müller.

Additional information

Handling editor: David Philip Hamilton

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 287 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, S., Mitrovic, S.M. Phytoplankton co-limitation by nitrogen and phosphorus in a shallow reservoir: progressing from the phosphorus limitation paradigm. Hydrobiologia 744, 255–269 (2015). https://doi.org/10.1007/s10750-014-2082-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2082-3

Keywords

Navigation