Skip to main content
Log in

The relative importance of spatial and environmental processes in distribution of benthic chironomid larvae within a large and shallow lake

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Although chironomids are popular model organisms in ecological research and indicators of bioassessment, the relative role of dispersal and environmental filtering in their community assembly is still poorly known, especially at fine spatial scales. In this study, we applied a metacommunity framework and used various statistical tools to examine the relative role of spatial and local environmental factors in distribution of benthic chironomid taxa and their assemblages in large and shallow Lake Balaton, Hungary. Contrary to present predictions on the metacommunity organisation of aquatic insects with winged terrestrial adults, we found that dispersal limitation can considerably affect distribution of chironomids even at lake scale. However, we also revealed the predominant influence of environmental filtering, and strong taxa–environment relationships were observed especially along sediment type, sediment organic matter content and macrophyte coverage gradients. We account that identified reference conditions and assemblages along with specified optima and tolerances of the abundant taxa can contribute to our understanding of chironomid ecology and be utilised in shallow lake bioassessment. Further, we propose that predictive models of species–environment relationships should better take into account pure spatial structuring of local communities and species-specific variability of spatial processes and environmental control even at small spatial scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali, A., J. Frouz & R. J. Lobinske, 2002. Spatio-temporal effects of selected physico-chemical variables of water, algae and sediment chemistry on the larval community of nuisance Chironomidae (Diptera) in a natural and a man-made lake in central Florida. Hydrobiologia 470: 181–193.

    Article  Google Scholar 

  • Anderson, R. O., 1959. A modified flotation technique for sorting bottom fauna samples. Limnology and Oceanography 4: 223–225.

    Article  Google Scholar 

  • Armitage, P. D., 1995. Behaviour and ecology of adults. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae: Biology and Ecology of Non-Biting Midges. Chapman & Hall, London: 194–224.

    Chapter  Google Scholar 

  • Beisner, B. E., P. R. Peres-Neto, E. S. Lindström, A. Barnett & M. R. Longht, 2006. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87: 2985–2991.

    Article  PubMed  Google Scholar 

  • Bíró, K., 1981. A guide for the identification of Chironomid larvae in Hungary. In Felföldy, L. (ed.), Hydrobiology for Water Management Praxis, Vol. 11. Vízdok, Budapest: 1–229 (in Hungarian).

    Google Scholar 

  • Bitušík, P. & M. Svitok, 2006. Structure of chironomid assemblages along environmental and geographical gradients in the Bohemian Forest lakes (Central Europe): an exploratory analysis. Biologia, Bratislava 61: 467–476.

    Article  Google Scholar 

  • Borcard, D. & P. Legendre, 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrix. Ecological Modelling 153: 51–68.

    Article  Google Scholar 

  • Borcard, D., P. Legendre, C. Avois-Jacquet & H. Toumisto, 2004. Dissecting the spatial structure of ecological data at multiple scales. Ecology 85: 1826–1832.

    Article  Google Scholar 

  • Brodersen, K. P. & N. J. Anderson, 2002. Distribution of chironomids (Diptera) in low arctic West Greenland lakes: trophic conditions, temperature and environmental reconstructions. Freshwater Biology 47: 1137–1157.

    Article  Google Scholar 

  • Brodersen, K. P. & R. Quinlan, 2006. Midges as palaeoindicators of lake productivity, eutrophication and hypolimnetic oxygen. Quaternary Science Reviews 25: 1995–2012.

    Article  Google Scholar 

  • Brundin, L., 1958. The bottom faunistical lake type system and its application to the southern hemisphere. Moreover a theory of glacial erosion as a factor of productivity in lakes and oceans. Verhandlungen des Internationalen Verein Limnologie 13: 288–297.

    Google Scholar 

  • Capers, R. S., R. Selsky & G. J. Bugbee, 2009. The relative importance of local conditions and regional processes in structuring aquatic plant communities. Freshwater Biology 55: 952–966.

    Article  Google Scholar 

  • Carpenter, S. R. & D. M. Lodge, 1986. Effects of submersed macrophytes on ecosystem processes. Aquatic Botany 26: 341–370.

    Article  Google Scholar 

  • Čerba, D., Z. Mihaljević & J. Vidaković, 2010. Colonisation of temporary macrophyte substratum by midges (Chironomidae: Diptera). Annales de Limnologie—International Journal of Limnology 46: 181–190.

    Article  Google Scholar 

  • Chase, J. M. & M. A. Leibold, 2003. Ecological Niches. Linking Classical and Contemporary Approaches. University of Chicago Press, Chicago.

    Book  Google Scholar 

  • Cottenie, K., 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8: 1175–1182.

    Article  PubMed  Google Scholar 

  • Cranston, P. S., 1982. A Key to the Larvae of the British Orthocladiinae (Chironominae). Freshwater Biological Association Scientific Publication 45, The Freshwater Biological Association, Ambleside.

  • Cushman, S. A. & K. McGarigal, 2002. Hierarchical, multi-scale decomposition of species–environment relationships. Landscape Ecology 17: 637–646.

    Article  Google Scholar 

  • Dray, S., P. Legendre & P. R. Peres-Neto, 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrix (PCNM). Ecological Modelling 196: 483–493.

    Article  Google Scholar 

  • Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.

    Google Scholar 

  • Ferrington, Jr., L. C., 2008. Global diversity of non-biting midges (Chironomidae; Insecta-Diptera) in freshwater. Hydrobiologia 595: 444–455.

    Google Scholar 

  • Free, G., A. G. Solimini, B. Rossaro, L. Marziali, R. Giacchini, B. Paracchini, M. Ghiani, S. Vaccaro, B. M. Gawlik, R. Fresner, G. Santner, M. Schönhuber & A. C. Cardoso, 2009. Modelling lake macroinvertebrate species in the shallow sublittoral: relative roles of habitat, lake morphology, aquatic chemistry and sediment composition. Hydrobiologia 633: 123–136.

    Article  CAS  Google Scholar 

  • Gajewski, K., G. Bouchard, S. E. Wilson, J. Kurek & L. C. Cwynar, 2005. Distribution of Chironomidae (Insecta: Diptera) head capsules in recent sediments of Canadian Arctic lakes. Hydrobiologia 549: 131–143.

    Article  Google Scholar 

  • Gravel, D., C. D. Canham, M. Beaudet & C. Messier, 2006. Reconciling niche and neutrality: the continuum hypothesis. Ecology Letters 9: 399–409.

    Article  PubMed  Google Scholar 

  • Grönroos, M., J. Heino, T. Siqueira, V. L. Landeiro, J. Kotanen & L. M. Bini, 2013. Metacommunity structuring in stream networks: roles of dispersal mode, distance type, and regional environmental context. Ecology and Evolution 3: 4473–4487.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1–9.

    Google Scholar 

  • Heino, J., 2013a. Environmental heterogeneity, dispersal mode, and co-occurrence in stream macroinvertebrates. Ecology and Evolution 3: 344–355.

    Article  PubMed Central  PubMed  Google Scholar 

  • Heino, J., 2013b. Does dispersal ability affect the relative importance of environmental control and spatial structuring of littoral macroinvertebrate communities? Oecologia 171: 971–980.

    Article  PubMed  Google Scholar 

  • Heiri, O., A. F. Lotter & G. Lemcke, 2001. Loss of ignition as a method for estimating organic and carbon content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101–110.

    Article  Google Scholar 

  • Istvánovics, V., A. Clement, L. Somlyódy, A. Specziár, L. G. Tóth & J. Padisák, 2007. Updating water quality targets for shallow Lake Balaton (Hungary), recovering from eutrophication. Hydrobiologia 581: 305–318.

    Article  Google Scholar 

  • Iwamura, T., H. Nagai & S. Ishimura, 1970. Improved methods for determining contents of chlorophyll, protein, ribonucleic and desoxyribonucleic acid in planktonic populations. International Review of Hydrobiology 55: 131–147.

    Article  CAS  Google Scholar 

  • Janecek, B. F. R., 1998. Diptera: Chironomidae (Zuckmücken). Bestimmung von 4 Larvenstadien mitteleuropäischer Gattungen und österreichischer Arten. In Moog, O. (ed.), Fauna Aquatica Austriaca V. Universität für Bodenkultur, Wien.

    Google Scholar 

  • Juggins, S., 2007. C2 Version 1.5 User Guide. Software for Ecological and Palaeoecological Data Analysis and Visualisation. Newcastle University, Newcastle upon Tyne, UK.

    Google Scholar 

  • Jyväsjärvi, J., G. Boros, R. I. Jones & H. Hämäläinen, 2013. The importance of sedimenting organic matter, relative to oxygen and temperature, in structuring lake profundal macroinvertebrate assemblages. Hydrobiologia 709: 55–72.

    Article  Google Scholar 

  • Legendre, P. & L. Legendre, 2012. Numerical Ecology. Elsevier, Amsterdam.

    Google Scholar 

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzales, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.

    Article  Google Scholar 

  • Lepš, J. & P. Šmilauer, 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, New York.

    Google Scholar 

  • Logue, J. B., N. Mouquet, H. Peter, H. Hillebrand, P. Declerck, A. Flohre, S. Gantner, N. Gülzow, P. Hörtnagl, S. Meier & B. Pecceu, 2011. Empirical approaches to metacommunities: a review and comparison with theory. Trends in Ecology and Evolution 26: 482–491.

    Article  PubMed  Google Scholar 

  • Luoto, T. P., 2012. Spatial uniformity in depth optima of midges: evidence from sedentary archives of shallow Alpine and boreal lakes. Journal of Limnology 71: 228–232.

    Article  Google Scholar 

  • Milošević, D., V. Simić, M. Stojković, D. Čerba, D. Mančev, A. Petrović & M. Paunović, 2013. Spatio-temporal pattern of the Chironomidae community: toward the use of non-biting midges in bioassessment programs. Aquatic Ecology 47: 37–55.

    Article  Google Scholar 

  • Mousavi, S. K., 2002. Boreal chironomid communities and their relations to environmental factors—the impact of lake depth, size and acidity. Boreal Environment Research 7: 63–75.

    CAS  Google Scholar 

  • Na, K. B. & Y. J. Bae, 2010. New Species of Stictochironomus, Tanytarsus and Conchapelopia (Diptera: Chironomidae) from Korea. Entomological Research Bulletin 26: 33–39.

    Google Scholar 

  • Palmer, M. A., J. D. Allan & C. A. Butman, 1996. Dispersal as a regional process affecting the local dynamics of marine and stream benthic invertebrates. Trends in Ecology & Evolution 11: 322–326.

    Article  CAS  Google Scholar 

  • Pandit, S. N., J. Kolasa & K. Cottenie, 2009. Contrast between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90: 2253–2262.

    Article  PubMed  Google Scholar 

  • Papas, P., 2007. Effect of Macrophytes on Aquatic Invertebrates—A Literature Review. Technical Report Series No. 158, Arthur Rylah Institute for Environmental Research, Melbourne.

  • Patrick, C. J. & C. M. Swan, 2011. Reconstructing the assembly of a stream-insect metacommunity. Journal of North American Benthological Society 30: 259–272.

    Article  Google Scholar 

  • Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.

    Article  PubMed  Google Scholar 

  • Porinchu, D. F. & G. M. MacDonald, 2003. The use and application of freshwater midges (Chironomidae: Insecta: Diptera) in geographical research. Progress in Physical Geography 27: 378–422.

    Article  Google Scholar 

  • Puntí, T., M. Rieradevall & N. Prat, 2009. Environmental factors, spatial variation and specific requirements of Chironomidae in Mediterranean reference streams. Journal of the North American Benthological Society 28: 247–265.

    Article  Google Scholar 

  • Rae, J. G., 2004. The colonization response of lotic chironomid larvae to substrate size and heterogeneity. Hydrobiologia 524: 115–124.

    Article  Google Scholar 

  • Rae, J. G., 2013. Abiotic factors affect microhabitat selection and community dynamics in a sandy-bottom lotic chironomid midge assemblage. Hydrobiologia 700: 121–130.

    Article  Google Scholar 

  • Real, M., M. Rieradevall & N. Prat, 2000. Chironomus species (Diptera: Chironomidae) in the profundal benthos of Spanish reservoirs and lakes: factors affecting distribution patterns. Freshwater Biology 43: 1–18.

    Article  Google Scholar 

  • Ruse, L. P., 1994. Chironomid microdistribution in gravel of an English chalk river. Freshwater Biology 32: 533–551.

    Article  Google Scholar 

  • Sæther, O. A., 1979. Chironomid communities as water quality indicators. Holarctic Ecology 2: 65–74.

    Google Scholar 

  • Sæther, O. A., P. Ashe & D. A. Murray, 2000. A.6. Family Chironomidae. In Papp, L. & B. Darvas (eds), Contribution to a Manual of Palearctic Diptera. Appendix. Science Herald, Budapest: 113–334.

    Google Scholar 

  • Shurin, J. B., J. E. Havel, M. A. Leibold & B. Pinel-Alloul, 2000. Local and regional zooplankton species richness: a scale-independent test for saturation. Ecology 81: 3062–3073.

    Article  Google Scholar 

  • Silver, P., J. K. Cooper, M. A. Palmer & E. J. Davis, 2000. The arrangement of resources in patchy landscapes: effects on distribution, survival, and resource acquisition on chironomids. Oecologia 124: 216–224.

    Article  Google Scholar 

  • Specziár, A., 2008. Life history patterns of Procladius choreus, Tanypus punctipennis and Chironomus balatonicus in Lake Balaton. Annales de Limnologie—International Journal of Limnology 44: 181–188.

    Article  Google Scholar 

  • Specziár, A. & P. Bíró, 1998. Spatial distribution and short-term changes of benthic macrofauna in Lake Balaton (Hungary). Hydrobiologia 389: 203–216.

    Article  Google Scholar 

  • Specziár, A. & L. Vörös, 2001. Long term dynamics of Lake Balaton’s chironomid fauna and its dependence on the phytoplankton production. Archiv für Hydrobiologie 152: 119–142.

    Google Scholar 

  • Syrovátka, V., J. Schenková & K. Brabec, 2009. The distribution of chironomid larvae and oligochaetes within a stony-bottomed river stretch: the role of substrate and hydraulic characteristics. Fundamental and Applied Limnology 174: 43–62.

    Article  Google Scholar 

  • Tarkowska-Kukuryk, M. & R. Kornijów, 2008. Influence of spatial distribution of submerged macrophytes on Chironomidae assemblages in shallow lakes. Polish Journal of Ecology 56: 569–579.

    Google Scholar 

  • ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca, New York.

    Google Scholar 

  • Tokeshi, M. & L. C. V. Pinder, 1985. Microhabitats of stream invertebrates on two submerged macrophytes with contrasting leaf morphology. Holarctic Ecology 8: 313–319.

    Google Scholar 

  • Tóth, M., A. Móra, B. Kiss, Gy Dévai & A. Specziár, 2012. Are macrophyte-dwelling Chironomidae (Diptera) largely opportunistic in selecting plant species? European Journal of Entomology 109: 247–260.

    Article  Google Scholar 

  • Tóth, M., D. Árva, S. A. Nagy & A. Specziár, 2013. Species diversity and abundance of plant-dwelling chironomids across hierarchical habitat and seasonal scales in the oxbow lakes of River Tisza, Hungary. Fundamental and Applied Limnology 182: 309–321.

    Article  Google Scholar 

  • Vallenduuk, H. J., 1999. Key to the Larvae of Glyptotendipes Kieffer (Diptera, Chironomidae) in Western Europe. Privately Published, Lelystad.

    Google Scholar 

  • Vallenduuk, H. J. & H. K. M. Moller Pillot, 2002. Key to the Larvae of Chironomus in Western Europe. Privately Published, Lelystad.

    Google Scholar 

  • Van de Meutter, F., L. De Meester & R. Stoks, 2007. Metacommunity structure of pond macroinvertebrates: effects of dispersal mode and generation time. Ecology 88: 1687–1695.

    Article  PubMed  Google Scholar 

  • Verberk, W. C. E. P., G. van der Velde & H. Esselink, 2010. Explaining abundance–occupancy relationships in specialists and generalists: a case study on aquatic macroinvertebrates in standing waters. Journal of Animal Ecology 79: 589–601.

    Article  PubMed  Google Scholar 

  • Verneaux, V. & L. Aleya, 1998. Spatial and temporal distribution of chironomidae larvae (Diptera: Nematocera) at the sediment–water interface in Lake Abbaye (Jura, France). Hydrobiologia 373–374: 169–180.

    Article  Google Scholar 

  • Wiederholm, T., 1983. Chironomidae of the Holarctic region. Keys and diagnoses. Part 1. Larvae. Entomologica Scandinavica Supplement 19: 1–457.

    Google Scholar 

  • Wilson, S. E. & K. Gajewski, 2004. Modern chironomid assemblages and their relationship to physical and chemical variables in southwest Yukon and northern British Columbia Lakes. Arctic, Antarctic, and Alpine Research 34: 446–455.

    Article  Google Scholar 

  • Wolfram, G., 1996. Distribution and production of chironomids (Diptera, Chironomidae) in a shallow, alkaline lake (Neusiedler See, Austria). Hydrobiologia 318: 103–115.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Géza Dobos for his assistance in the field. Special thanks to Steve Juggins for providing us a free C2 license. This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP-4.2.4.A/2-11/1-2012-0001 ‘National Excellence Program’ and the Hungarian Scientific Research Fund (OTKA K104279).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diána Árva.

Additional information

Handling editor: Judit Padisak

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 60 kb)

Supplementary material 2 (PDF 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Árva, D., Tóth, M., Horváth, H. et al. The relative importance of spatial and environmental processes in distribution of benthic chironomid larvae within a large and shallow lake. Hydrobiologia 742, 249–266 (2015). https://doi.org/10.1007/s10750-014-1989-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1989-z

Keywords

Navigation