Skip to main content
Log in

Stroke epidemiology and outcomes in the modern era of left ventricular assist devices

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

The care for the patients with end-stage heart failure has been revolutionized by the introduction of durable left ventricular assist devices, providing a substantial improvement in patient survival and quality of life and an alternative to heart transplantation. The newest devices have lower instances of mechanical dysfunction and associated pump thrombosis. Despite these improvements in complications, the use of continuous flow assist devices is still associated with high rates of thrombotic and hemorrhagic complications, most notably stroke in approximately 10% of continuous flow assist devices patients per year. With the newest HeartMate 3 devices, there have been lower observed rates of stroke, which has in part been achieved by both improvements in pump technology and knowledge of the risk factors for stroke and neurological complications. The therapeutic options available to clinicians to reduce the risk of stroke, including management of hypertension and antithrombotics, will be reviewed in this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References 

  1. Rose EA, Gelijns AC, Moskowitz AJ et al (2001) Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 345(20):1435–1443

    Article  CAS  Google Scholar 

  2. Chatterjee A, Feldmann C, Dogan G et al (2018) Clinical overview of the HVAD: a centrifugal continuous-flow ventricular assist device with magnetic and hydrodynamic bearings including lateral implantation strategies. J Thorac Dis 10(Suppl 15):S1785–S1789

    Article  Google Scholar 

  3. Milano CA, Rogers JG, Tatooles AJ et al (2018) HVAD: The ENDURANCE supplemental trial. JACC Heart Fail 6(9):792–802

    Article  Google Scholar 

  4. Cho SM, Mehaffey JH, Meyers SL et al (2021) Cerebrovascular events in patients with centrifugal-flow left ventricular assist devices: propensity score-matched analysis from the Intermacs registry. Circulation 144(10):763–772

    Article  CAS  Google Scholar 

  5. Stehlik J, Kirklin JK (2021) The long and winding road to an effective left ventricular assist device: the demise of medtronic’s HVAD. Circulation 144(7):509–511

    Article  Google Scholar 

  6. Kuehn BM (2021) FDA: Stop using medtronic’s heartware ventricular assist device. JAMA 326(3):215

    PubMed  Google Scholar 

  7. Mehra MR, Uriel N, Naka Y et al (2019) A fully magnetically levitated left ventricular assist device - final report. N Engl J Med 380(17):1618–1627

    Article  Google Scholar 

  8. Colombo PC, Mehra MR, Goldstein DJ et al (2019) Comprehensive analysis of stroke in the long-term cohort of the MOMENTUM 3 study. Circulation 139(2):155–168

    Article  Google Scholar 

  9. Frontera JA, Starling R, Cho SM et al (2017) Risk factors, mortality, and timing of ischemic and hemorrhagic stroke with left ventricular assist devices. J Heart Lung Transplant 36(6):673–683

    Article  Google Scholar 

  10. Harvey L, Holley C, Roy SS et al (2015) Stroke after left ventricular assist device implantation: outcomes in the continuous-flow era. Ann Thorac Surg 100(2):535–541

    Article  Google Scholar 

  11. Kirklin JK, Naftel DC, Myers SL, Pagani FD, Colombo PC (2020) Quantifying the impact from stroke during support with continuous flow ventricular assist devices: An STS INTERMACS analysis. J Heart Lung Transplant

  12. Boyle AJ, Russell SD, Teuteberg JJ et al (2009) Low thromboembolism and pump thrombosis with the HeartMate II left ventricular assist device: analysis of outpatient anti-coagulation. J Heart Lung Transplant 28(9):881–887

    Article  Google Scholar 

  13. Kadakkal A, Najjar SS (2018) Neurologic events in continuous-flow left ventricular assist devices. Cardiol Clin 36(4):531–539

    Article  Google Scholar 

  14. John R, Naka Y, Park SJ (2014) Impact of concurrent surgical valve procedures in patients receiving continuous-flow devices. J Thorac Cardiovasc Surg 147(2):581–589. discussion 589

  15. Morgan JA, Brewer RJ, Nemeh HW et al (2014) Stroke while on long-term left ventricular assist device support: incidence, outcome, and predictors. ASAIO J 60(3):284–289

    Article  Google Scholar 

  16. Cho SM, Moazami N, Frontera JA (2017) Stroke and Intracranial hemorrhage in HeartMate II and HeartWare left ventricular assist devices: a systematic review. Neurocrit Care 27(1):17–25

    Article  Google Scholar 

  17. Feldman D, Pamboukian SV, Teuteberg JJ et al (2013) The 2013 international society for heart and lung transplantation guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant 32(2):157–187

    Article  Google Scholar 

  18. Willey JZ, Demmer RT, Takayama H, Colombo PC, Lazar RM (2014) Cerebrovascular disease in the era of left ventricular assist devices with continuous flow: risk factors, diagnosis, and treatment. J Heart Lung Transplant 33(9):878–887

    Article  Google Scholar 

  19. Slaughter MS, Rogers JG, Milano CA et al (2009) Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 361(23):2241–2251

    Article  CAS  Google Scholar 

  20. Pagani FD, Miller LW, Russell SD et al (2009) Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol 54(4):312–321

    Article  Google Scholar 

  21. Slaughter MS, Pagani FD, McGee EC et al (2013) HeartWare ventricular assist system for bridge to transplant: combined results of the bridge to transplant and continued access protocol trial. J Heart Lung Transplant 32(7):675–683

    Article  Google Scholar 

  22. Rogers JG, Pagani FD, Tatooles AJ et al (2017) Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med 376(5):451–460

    Article  Google Scholar 

  23. Starling RC, Estep JD, Horstmanshof DA et al (2017) Risk assessment and comparative effectiveness of left ventricular assist device and medical management in ambulatory heart failure patients: the ROADMAP study 2-year results. JACC Heart Fail 5(7):518–527

    Article  Google Scholar 

  24. Nassif ME, Tibrewala A, Raymer DS et al (2015) Systolic blood pressure on discharge after left ventricular assist device insertion is associated with subsequent stroke. J Heart Lung Transplant 34(4):503–508

    Article  Google Scholar 

  25. Pinsino A, Castagna F, Zuver AM et al (2019) Prognostic implications of serial outpatient blood pressure measurements in patients with an axial continuous-flow left ventricular assist device. J Heart Lung Transplant 38(4):396–405

    Article  Google Scholar 

  26. Cowger JA, Shah P, Pagani FD et al (2020) Outcomes based on blood pressure in patients on continuous flow left ventricular assist device support: an Interagency Registry for Mechanically Assisted Circulatory Support analysis. J Heart Lung Transplant 39(5):441–453

    Article  Google Scholar 

  27. Acharya D, Loyaga-Rendon R, Morgan CJ et al (2017) INTERMACS Analysis of stroke during support with continuous-flow left ventricular assist devices: risk factors and outcomes. JACC Heart Fail 5(10):703–711

    Article  Google Scholar 

  28. Aggarwal A, Gupta A, Kumar S et al (2012) Are blood stream infections associated with an increased risk of hemorrhagic stroke in patients with a left ventricular assist device? ASAIO J 58(5):509–513

    Article  CAS  Google Scholar 

  29. Cho SM, Moazami N, Katz S, Bhimraj A, Shrestha NK, Frontera JA (2019) Stroke risk following infection in patients with continuous-flow left ventricular assist device. Neurocrit Care 31(1):72–80

    Article  Google Scholar 

  30. Willey JZ, Boehme AK, Castagna F et al (2016) Hypertension and stroke in patients with left ventricular assist devices (LVADs). Curr Hypertens Rep 18(2):12

    Article  Google Scholar 

  31. Goodwin K, Kluis A, Alexy T, John R, Voeller R (2018) Neurological complications associated with left ventricular assist device therapy. Expert Rev Cardiovasc Ther 16(12):909–917

    Article  CAS  Google Scholar 

  32. Kirklin JK, Pagani FD, Kormos RL et al (2017) Eighth annual INTERMACS report: special focus on framing the impact of adverse events. J Heart Lung Transplant 36(10):1080–1086

    Article  Google Scholar 

  33. Maltais S, Kilic A, Nathan S et al (2017) PREVENtion of HeartMate II Pump thrombosis through clinical management: the PREVENT multi-center study. J Heart Lung Transplant 36(1):1–12

    Article  Google Scholar 

  34. Xanthopoulos A, Tryposkiadis K, Triposkiadis F (2020)  Postimplant phosphodiesterase type 5 inhibitors use is associated with lower rates of thrombotic events after left ventricular assist device implantation. J Am Heart Assoc 9(14):e015897

  35. Gulati G, Grandin EW, Kennedy K (2019)  Preimplant phosphodiesterase-5 inhibitor use is associated with higher rates of severe early right heart failure after left ventricular assist device implantation. Circ Heart Fail 12(6):e005537

  36. Willey JZ, Gavalas MV, Trinh PN (2016) Outcomes after stroke complicating left ventricular assist device. J Heart Lung Transplant 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Z. Willey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibeh, C., Melmed, K.R., Yuzefpolskaya, M. et al. Stroke epidemiology and outcomes in the modern era of left ventricular assist devices. Heart Fail Rev 27, 393–398 (2022). https://doi.org/10.1007/s10741-021-10201-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-021-10201-x

Keyword

Navigation