Skip to main content

Advertisement

Log in

Role of cytokines and inflammation in heart function during health and disease

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

By virtue of their actions on NF-κB, an inflammatory nuclear transcription factor, various cytokines have been documented to play important regulatory roles in determining cardiac function under both physiological and pathophysiological conditions. Several cytokines including TNF-α, TGF-β, and different interleukins such as IL-1 IL-4, IL-6, IL-8, and IL-18 are involved in the development of various inflammatory cardiac pathologies, namely ischemic heart disease, myocardial infarction, heart failure, and cardiomyopathies. In ischemia-related pathologies, most of the cytokines are released into the circulation and serve as biological markers of inflammation. Furthermore, there is an evidence of their direct role in the pathogenesis of ischemic injury, suggesting cytokines as potential targets for the development of some anti-ischemic therapies. On the other hand, certain cytokines such as IL-2, IL-4, IL-6, IL-8, and IL-10 are involved in the post-ischemic tissue repair and thus are considered to exert beneficial effects on cardiac function. Conflicting reports regarding the role of some cytokines in inducing cardiac dysfunction in heart failure and different types of cardiomyopathies seem to be due to differences in the nature, duration, and degree of heart disease as well as the concentrations of some cytokines in the circulation. In spite of extensive research work in this field of investigation, no satisfactory anti-cytokine therapy for improving cardiac function in any type of heart disease is available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lackie J (2010) A dictionary of biomedicine. Oxford University Press, ISBN-9780199549351

  2. Cohen S (1989) Lymphokines and the immune response. CRC Press, USA, ISBN-0-8493-6427-2

  3. Cannon JG (2000) Inflammatory cytokines in non-pathological states. News Physiol Sci 15:298–303

    PubMed  CAS  Google Scholar 

  4. Saini HK, Xu Y-J, Zhang M, Liu PP, Kirshenbaum LA, Dhalla NS (2005) Role of tumour necrosis factor-alpha and other cytokines in ischemia-reperfusion-induced injury in the heart. Exp Clin Cardiol 10(4):213–222

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Padua RR, Sethi R, Dhalla NS, Kardami E (1995) Basic fibroblast growth factor is cardioprotective in ischemia-reperfusion injury. Mol Cell Biochem 143:129–135

    Article  PubMed  CAS  Google Scholar 

  6. Parkin J, Cohen B (2001) An overview of the immune system. Lancet 357(9270):1777–1789

    Article  PubMed  CAS  Google Scholar 

  7. Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signaling. Nat Rev Immunol 5(5):375–386

    Article  PubMed  CAS  Google Scholar 

  8. Sun M, Fink PJ (2007) A new class of reverse signaling costimulators belongs to the TNF family. J Immunol 179(7):4307–4312

    Article  PubMed  CAS  Google Scholar 

  9. Beasley D, Cooper AL (1999) Constitutive expression of interleukin-1alpha precursor promotes human vascular smooth muscle cell proliferation. Am J Phys 276(3 Pt 2):H901–H912

    CAS  Google Scholar 

  10. Grötzinger J (2002) Molecular mechanisms of cytokine receptor activation. Biochim Biophys Acta 1592(3):215–223

    Article  PubMed  Google Scholar 

  11. Arimont M, Sun SL, Leurs R, Smit M, de Esch IJP, de Graaf C (2017) Structural analysis of chemokine receptor-ligand interactions. J Med Chem 60(12):4735–4779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Heaney ML, Golde DW (1998) Soluble receptors in human disease. J Leukoc Biol 64(2):135–146

    Article  PubMed  CAS  Google Scholar 

  13. Feldman AM, Combes A, Wagner D, Kadakomi T, Kubota T, Li YY, McTiernan C (2000) The role of tumor necrosis factor in the pathophysiology of heart failure. J Am Coll Cardiol 35(3):537–544

    Article  PubMed  CAS  Google Scholar 

  14. Valen G, Yan ZQ, Hansson GK (2001) Nuclear factor kappa-B and the heart. J Am Coll Cardiol 38(2):307–314

    Article  PubMed  CAS  Google Scholar 

  15. Khan R, Sheppard R (2006) Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology 118(1):10–24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132(3):344–362

    Article  PubMed  CAS  Google Scholar 

  17. Tilborghs S, Corthouts J, Verhoeven Y, Arias D, Rolfo C, Trinh XB, van Dam PA (2017) The role of nuclear factor-kappa B signaling in human cervical cancer. Crit Rev Oncol Hematol 120:141–150

    Article  PubMed  Google Scholar 

  18. Sun SC (2012) The noncanonical NF-κB pathway. Immunol Rev 246(1):125–140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Caamaño J, Hunter CA (2002) NF-kappaB family of transcription factors: central regulators of innate and adaptive immune functions. Clin Microbiol Rev 15(3):414–129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gordon JW, Shaw JA, Kirshenbaum LA (2011) Multiple facets of NF-κB in the heart: to be or not to NF-κB. Circ Res 108(9):1122–1132

    Article  PubMed  CAS  Google Scholar 

  21. Regula KM, Baetz D, Kirshenbaum LA (2004) Nuclear factor-kappaB represses hypoxia-induced mitochondrial defects and cell death of ventricular myocytes. Circulation 110(25):3795–3802

    Article  PubMed  CAS  Google Scholar 

  22. Wu XY, Luo AY, Zhou YR, Ren JH (2014) N-acetylcysteine reduces oxidative stress, nuclear facto-κB activity and cardiomyocyte apoptosis in heart failure. Mol Med Rep 10(2):615–624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wang RP, Yao Q, Xiao YB, Zhu SB, Yang L, Feng JM, Li DZ, Li XL, Wu JJ, Chen J (2011) Toll-like receptor 4/nuclear factor-kappa B pathway is involved in myocardial injury in a rat chronic stress model. Stress 14(5):567–575

    Article  PubMed  CAS  Google Scholar 

  24. Pye J, Ardeshirpour F, McCain A, Bellinger DA, Merricks E, Adams J, Elliott PJ, Pien C, Fischer TH, Baldwin AS Jr, Nichols TC (2003) Proteasome inhibition ablates activation of NF-kappa B in myocardial reperfusion and reduces reperfusion injury. Am J Physiol Heart Circ Physiol 284(3):H919–H926

    Article  PubMed  CAS  Google Scholar 

  25. Frantz S, Hu K, Bayer B, Gerondakis S, Strotmann J, Adamek A, Ertl G, Bauersachs J (2006) Absence of NF-kappaB subunit p50 improves heart failure after myocardial infarction. FASEB J 20(11):1918–1920

    Article  PubMed  CAS  Google Scholar 

  26. Moss NC, Stansfield WE, Willis MS, Tang RH, Selzman CH (2007) IKKbeta inhibition attenuates myocardial injury and dysfunction following acute ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 293:H2248–H2253

    Article  PubMed  CAS  Google Scholar 

  27. Liu CC, Huang Y, Zhang JH, Xu Y, Wu CH (2013) Effect of carvedilol on cardiac dysfunction 4 days after myocardial infarction in rats: role of toll-like receptor 4 and β-arrestin 2. Eur Rev Med Pharmacol Sci 17(15):2103–2110

    PubMed  Google Scholar 

  28. Burma O, Onat E, Uysal A, Ilhan N, Erol D, Ozcan M, Sahna E (2014) Effects of rosuvastatin on ADMA, rhokinase, NADPH oxidase, caveolin-1, hsp 90 and NFkB levels in a rat model of myocardial ischaemia-reperfusion. Cardiovasc J Afr 25(5):212–216

    Article  PubMed  PubMed Central  Google Scholar 

  29. Burchfield JS, Dong JW, Sakata Y, Gao F, Tzeng HP, Topkara VK, Entman ML, Sivasubramanian N, Mann DL (2010) The cytoprotective effects of tumor necrosis factor are conveyed through tumor necrosis factor receptor-associated factor 2 in the heart. Circ Heart Fail 3(1):157–164

    Article  PubMed  CAS  Google Scholar 

  30. Tzeng HP, Evans S, Gao F, Chambers K, Topkara VK, Sivasubramanian N, Barger PM, Mann DL (2014) Dysferlin mediates the cytoprotective effects of TRAF2 following myocardial ischemia reperfusion injury. J Am Heart Assoc 3:e000662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Misra A, Haudek SB, Knuefermann P, Vallejo JG, Chen ZJ, Michael LH, Sivasubramanian N, Olson EN, Entman ML, Mann DL (2003) Nuclear factor-kappaB protects the adult cardiac myocyte against ischemia-induced apoptosis in a murine model of acute myocardial infarction. Circulation 108(25):3075–3078

    Article  PubMed  CAS  Google Scholar 

  32. Díaz A, Humeres C, González V, Gómez MT, Montt N, Sanchez G, Chiong M, García L (2015) Insulin/NFκB protects against ischemia-induced necrotic cardiomyocyte death. Biochem Biophys Res Commun 467(2):451–457

    Article  PubMed  CAS  Google Scholar 

  33. Bagul PK, Deepthi N, Sultana R, Banerjee SK (2015) Resveratrol ameliorates cardiac oxidative stress in diabetes through deacetylation of NFkB-p65 and histone 3. J Nutr Biochem 26(11):1298–1307

    Article  PubMed  CAS  Google Scholar 

  34. Padiya R, Chowdhury D, Borkar R, Srinivas R, Pal Bhadra M, Banerjee SK (2014) Garlic attenuates cardiac oxidative stress via activation of PI3K/AKT/Nrf2-Keap1 pathway in fructose-fed diabetic rat. PLoS One 9(5):e94228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wassef MAE, Tork OM, Rashed LA, Ibrahim W, Morsi H, Rabie DMM (2018) Mitochondrial dysfunction in diabetic cardiomyopathy: effect of mesenchymal stem cell with PPAR-γ agonist or exendin-4. Exp Clin Endocrinol Diabetes 126(1):27–38

    Article  PubMed  CAS  Google Scholar 

  36. Jovanovic A, Sudar-Milovanovic E, Obradovic M, Pitt SJ, Stewart AJ, Zafirovic S, Stanimirovic J, Radak D, Isenovic ER (2017) Influence of a high-fat diet on cardiac iNOS in female rats. Curr Vasc Pharmacol 15(5):491–500

    Article  PubMed  CAS  Google Scholar 

  37. Lin KH, Liu CL, Kuo WW, Paul CR, Chen WK, Wen SY, Day CH, Wu HC, Viswanadha VP, Huang CY (2016) Early fluid resuscitation by lactated Ringer’s solution alleviate the cardiac apoptosis in rats with trauma-hemorrhagic shock. PLoS One 11(10):e0165406

    Article  PubMed  PubMed Central  Google Scholar 

  38. Huang H, Joseph LC, Gurin MI, Thorp EB, Morrow JP (2014) Extracellular signal-regulated kinase activation during cardiac hypertrophy reduces sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) transcription. J Mol Cell Cardiol 75:58–63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Forman K, Vara E, García C, Kireev R, Cuesta S, Acuña-Castroviejo D, Tresguerres JA (2016) Influence of aging and growth hormone on different members of the NFkB family and IkB expression in the heart from a murine model of senescence-accelerated aging. Exp Gerontol 73:114–120

    Article  PubMed  CAS  Google Scholar 

  40. Santos DG, Resende MF, Mill JG, Mansur AJ, Krieger JE, Pereira AC (2010) Nuclear factor (NF) kappa B polymorphism is associated with heart function in patients with heart failure. BMC Med Genet 11:89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Mishra A, Srivastava A, Mittal T, Garg N, Mittal B (2013) Role of inflammatory gene polymorphisms in left ventricular dysfunction (LVD) susceptibility in coronary artery disease (CAD) patients. Cytokine 61(3):856–861

    Article  PubMed  CAS  Google Scholar 

  42. Monden Y, Kubota T, Inoue T, Tsutsumi T, Kawano S, Ide T, Tsutsui H, Sunagawa K (2007) Tumor necrosis factor-alpha is toxic via receptor 1 and protective via receptor 2 in a murine model of myocardial infarction. Am J Physiol Heart Circ Physiol 293(1):H743–H753

    Article  PubMed  CAS  Google Scholar 

  43. Fang L, Ellims AH, Beale AL, Taylor AJ, Murphy A, Dart AM (2017) Systemic inflammation is associated with myocardial fibrosis, diastolic dysfunction, and cardiac hypertrophy in patients with hypertrophic cardiomyopathy. Am J Transl Res 9(11):5063–5073

    PubMed  PubMed Central  Google Scholar 

  44. Eskandari V, Amirzargar AA, Mahmoudi MJ, Rahnemoon Z, Rahmani F, Sadati S, Rahmati Z, Gorzin F, Hedayat M, Rezaei N (2017) Gene expression and levels of IL-6 and TNFα in PBMCs correlate with severity and functional class in patients with chronic heart failure. Ir J Med Sci. https://doi.org/10.1007/s11845-017-1680-2

  45. Janczewski AM, Kadokami T, Lemster B, Frye CS, McTiernan CF, Feldman AM (2003) Morphological and functional changes in cardiac myocytes isolated from mice overexpressing TNF-alpha. Am J Physiol Heart Circ Physiol 284(3):H960–H969

    Article  PubMed  CAS  Google Scholar 

  46. Dibbs ZI, Diwan A, Nemoto S, DeFreitas G, Abdellatif M, Carabello BA, Spinale FG, Feuerstein G, Sivasubramanian N, Mann DL (2003) Targeted overexpression of transmembrane tumor necrosis factor provokes a concentric cardiac hypertrophic phenotype. Circulation 108(8):1002–1008

    Article  PubMed  CAS  Google Scholar 

  47. Dobaczewski M, Chen W, Frangogiannis NG (2011) Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol 51(4):600–606

    Article  PubMed  CAS  Google Scholar 

  48. Khalil H, Kanisicak O, Prasad V, Correll RN, Fu X, Schips T, Vagnozzi RJ, Liu R, Huynh T, Lee SJ, Karch J, Molkentin JD (2017) Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest 127(10):3770–3783

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ding Z, Yuan J, Liang Y, Wu J, Gong H, Ye Y, Jiang G, Yin P, Li Y, Zhang G, Yang C, Guo J, Chen Z, Wang X, Weng L, Zou Y (2017) Ryanodine receptor type 2 plays a role in the development of cardiac fibrosis under mechanical stretch through TGFβ-1. Int Heart J 58(6):957–961

    Article  PubMed  Google Scholar 

  50. Almendral JL, Shick V, Rosendorff C, Atlas SA (2010) Association between transforming growth factor-beta(1) and left ventricular mass and diameter in hypertensive patients. J Am Soc Hypertens 4(3):135–141

    Article  PubMed  CAS  Google Scholar 

  51. Boluyt MO, O'Neill L, Meredith AL, Bing OH, Brooks WW, Conrad CH, Crow MT, Lakatta EG (1994) Alterations in cardiac gene expression during the transition from stable hypertrophy to heart failure. Marked upregulation of genes encoding extracellular matrix components. Circ Res 75(1):23–32

    Article  PubMed  CAS  Google Scholar 

  52. Ayça B, Sahin I, Kucuk SH, Akin F, Kafadar D, Avşar M, Avci II, Gungor B, Okuyan E, Dinckal MH (2015) Increased transforming growth factor-β levels associated with cardiac adverse events in hypertrophic cardiomyopathy. Clin Cardiol 38(6):371–377

    Article  PubMed  PubMed Central  Google Scholar 

  53. Frangogiannis NG, Ren G, Dewald O, Zymek P, Haudek S, Koerting A, Winkelmann K, Michael LH, Lawler J, Entman ML (2005) Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts. Circulation 111(22):2935–2942

    Article  PubMed  CAS  Google Scholar 

  54. Rueda-Martínez C, Lamas O, Carrasco-Chinchilla F, Robledo-Carmona J, Porras C, Sánchez-Espín G, Navarro MJ, Fernández B (2017) Increased blood levels of transforming growth factor β in patients with aortic dilatation. Interact Cardiovasc Thorac Surg 25(4):571–574

    Article  PubMed  Google Scholar 

  55. Meldrum DR (1998) Tumor necrosis factor in the heart. Am J Phys 274(3 Pt 2):R577–R595

    CAS  Google Scholar 

  56. Jarrah AA, Schwarskopf M, Wang ER, LaRocca T, Dhume A, Zhang S, Hadri L, Hajjar RJ, Schecter AD, Tarzami ST (2017) SDF-1 induces TNF-mediated apoptosis in cardiac myocytes. Apoptosis. https://doi.org/10.1007/s10495-017-1438-3

  57. Tian M, Yuan YC, Li JY, Gionfriddo MR, Huang RC (2015) Tumor necrosis factor-α and its role as a mediator in myocardial infarction: a brief review. Chronic Dis Transl Med 1(1):18–26

    Article  PubMed  PubMed Central  Google Scholar 

  58. Waters JP, Pober JS, Bradley JR (2013) Tumour necrosis factor in infectious disease. J Pathol 230(2):132–147

    Article  PubMed  CAS  Google Scholar 

  59. Frangogiannis NG (2008) The immune system and cardiac repair. Pharmacol Res 58(2):88–111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Hedayat M, Mahmoudi MJ, Rose NR, Rezaei N (2010) Proinflammatory cytokines in heart failure: double-edged swords. Heart Fail Rev 15(6):543–562

    Article  PubMed  CAS  Google Scholar 

  61. Hamid T, Gu Y, Ortines RV, Bhattacharya C, Wang G, Xuan YT, Prabhu SD (2009) Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-kappaB and inflammatory activation. Circulation 119(10):1386–1397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Higuchi Y, McTiernan CF, Frye CB, McGowan BS, Chan TO, Feldman AM (2004) Tumor necrosis factor receptors 1 and 2 differentially regulate survival, cardiac dysfunction, and remodeling in transgenic mice with tumor necrosis factor-alpha-induced cardiomyopathy. Circulation 109(15):1892–1897

    Article  PubMed  CAS  Google Scholar 

  63. Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL (1992) Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257:387–389

    Article  PubMed  CAS  Google Scholar 

  64. Yokoyama T, Vaca L, Rossen RD, Durante W, Hazarika P, Mann DL (1993) Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J Clin Invest 92:2303–2312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Levine B, Kalman J, Mayer L, Fillit HM, Packer M (1990) Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 323(4):236–241

    Article  PubMed  CAS  Google Scholar 

  66. Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, Mann DL (1996) Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 93(4):704–711

    Article  PubMed  CAS  Google Scholar 

  67. Monden Y, Kubota T, Tsutsumi T, Inoue T, Kawano S, Kawamura N, Ide T, Egashira K, Tsutsui H, Sunagawa K (2007) Soluble TNF receptors prevent apoptosis in infiltrating cells and promote ventricular rupture and remodeling after myocardial infarction. Cardiovasc Res 73:794–805

    Article  PubMed  CAS  Google Scholar 

  68. Kurrelmeyer KM, Michael LH, Baumgarten G, Taffet GE, Peschon JJ, Sivasubramanian N, Entman ML, Mann DL (2000) Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc Natl Acad Sci U S A 97:5456–5461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Nakano M, Knowlton AA, Dibbs Z, Mann DL (1998) Tumor necrosis factor-alpha confers resistance to hypoxic injury in the adult mammalian cardiac myocyte. Circulation 97(14):1392–1400

    Article  PubMed  CAS  Google Scholar 

  70. Valgimigli M, Ceconi C, Malagutti P, Merli E, Soukhomovskaia O, Francolini G, Cicchitelli G, Olivares A, Parrinello G, Percoco G, Guardigli G, Mele D, Pirani R, Ferrari R (2005) Tumor necrosis factor-alpha receptor 1 is a major predictor of mortality and new-onset heart failure in patients with acute myocardial infarction: the Cytokine-Activation and Long-Term Prognosis in Myocardial Infarction (C-ALPHA) study. Circulation 111(7):863–870

    Article  PubMed  CAS  Google Scholar 

  71. Ping Z, Aiqun M, Jiwu L, Liang S (2017) TNF receptor 1/2 predict heart failure risk in type 2 diabetes mellitus patients. Int Heart J 58(2):245–249

    Article  PubMed  Google Scholar 

  72. Haudek SB, Taffet GE, Schneider MD, Mann DL (2007) TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways. J Clin Invest 117(9):2692–2701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Hartupee J, Szalai GD, Wang W, Ma X, Diwan A, Mann DL (2017) Impaired protein quality control during left ventricular remodeling in mice with cardiac restricted overexpression of tumor necrosis factor. Circ Heart Fail 10(12):e004252

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Sivasubramanian N, Coker ML, Kurrelmeyer KM, MacLellan WR, DeMayo FJ, Spinale FG, Mann DL (2001) Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation 104(7):826–831

    Article  PubMed  CAS  Google Scholar 

  75. Jude B, Vetel S, Giroux-Metges MA, Pennec JP (2018) Rapid negative inotropic effect induced by TNF-α in rat heart perfused related to PKC activation. Cytokine 107:65–69

    Article  PubMed  CAS  Google Scholar 

  76. Braz JC, Gregory K, Pathak A, Zhao W, Sahin B, Klevitsky R, Kimball TF, Lorenz JN, Nairn AC, Liggett SB, Bodi I, Wang S, Schwartz A, Lakatta EG, DePaoli-Roach AA, Robbins J, Hewett TE, Bibb JA, Westfall MV, Kranias EG, Molkentin JD (2004) PKC-alpha regulates cardiac contractility and propensity toward heart failure. Nat Med 10(3):248–254

    Article  PubMed  CAS  Google Scholar 

  77. Hallaq H, Wang DW, Kunic JD, George AL Jr, Wells KS, Murray KT (2012) Activation of protein kinase C alters the intracellular distribution and mobility of cardiac Na+ channels. Am J Physiol Heart Circ Physiol 302(3):H782–H789

    Article  PubMed  CAS  Google Scholar 

  78. Xiao GQ, Qu Y, Sun ZQ, Mochly-Rosen D, Boutjdir M (2001) Evidence for functional role of epsilonPKC isozyme in the regulation of cardiac Na(+) channels. Am J Phys Cell Phys 281(5):C1477–C1486

    Article  CAS  Google Scholar 

  79. Watson CL, Gold MR (1997) Modulation of Na+ current inactivation by stimulation of protein kinase C in cardiac cells. Circ Res 81(3):380–386

    Article  PubMed  CAS  Google Scholar 

  80. Duncan DJ, Yang Z, Hopkins PM, Steele DS, Harrison SM (2010) TNF-alpha and IL-1beta increase Ca2+ leak from the sarcoplasmic reticulum and susceptibility to arrhythmia in rat ventricular myocytes. Cell Calcium 47(4):378–386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Lee JH, Lee TK, Kim IH, Lee JC, Won MH, Park JH, Ahn JH, Shin MC, Ohk TG, Moon JB, Cho JH, Park CW, Tae HJ (2017) Changes in histopathology and tumor necrosis factor-α levels in the hearts of rats following asphyxial cardiac arrest. Clin Exp Emerg Med 4(3):160–167

    Article  PubMed  PubMed Central  Google Scholar 

  82. Al-Shudiefat AAR, Sharma AK, Bagchi AK, Dhingra S, Singal PK (2013) Oleic acid mitigates TNF-α-induced oxidative stress in rat cardiomyocytes. Mol Cell Biochem 372:75–82

    Article  PubMed  CAS  Google Scholar 

  83. Rathi SS, Xu Y-J, Dhalla NS (2002) Mechanism of cardioprotective action of TNF-α in the isolated rat heart. Exp Clin Cardiol 7:146–150

    PubMed  PubMed Central  CAS  Google Scholar 

  84. Zhang M, Xu Y-J, Saini HK, Turan B, Liu PP, Dhalla NS (2005) TNF-α as a potential mediator of cardiac dysfunction due to intracellular Ca2+-overload. Biochem Biophys Res Commun 327:57–63

    Article  PubMed  CAS  Google Scholar 

  85. Turan B, Saini HK, Zhang M, Prajapati D, Elimban V, Dhalla NS (2005) Selenium improves cardiac function by attenuating the activation of NF-κB due to ischemia-reperfusion injury. Antioxid Redox Signal 7:1388–1397

    Article  PubMed  CAS  Google Scholar 

  86. Zhang M, Xu Y-J, Saini HK, Turan B, Liu PP, Dhalla NS (2005) Pentoxifylline attenuates cardiac dysfunction and reduces TNF-α level in the ischemic-reperfused heart. Am J Physiol Heart Circ Physiol 289:H832–H839

    Article  PubMed  CAS  Google Scholar 

  87. Das S, Babick AP, Xu Y-J, Takeda N, Rodriguez-Leyva D, Dhalla NS (2010) TNF-α mediated signal transduction pathway is a major determinant of apoptosis in dilated cardiomyopathy. J Cell Mol Med 14:1988–1997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Saghebjoo M, Nezamdoost Z, Ahmadabadi F, Saffari I, Hamidi A (2017) The effect of 12 weeks of aerobic training on serum levels high sensitivity C-reactive protein, tumor necrosis factor-alpha, lipid profile and anthropometric characteristics in middle-age women patients with type 2 diabetes. Diabetes Metab Syndr S1871-4021(17)30379-X.

  89. Abd El-Kader SM, Al-Jiffri OH, Al-Shreef FM (2015) Aerobic exercises alleviate symptoms of fatigue related to inflammatory cytokines in obese patients with type 2 diabetes. Afr Health Sci 15(4):1142–1148

    Article  PubMed  PubMed Central  Google Scholar 

  90. Silva SD Jr, Jara ZP, Peres R, Lima LS, Scavone C, Montezano AC, Touyz RM, Casarini DE, Michelini LC (2017) Temporal changes in cardiac oxidative stress, inflammation and remodeling induced by exercise in hypertension: role for local angiotensin II reduction. PLoS One 12(12):e0189535.

  91. Windsor MT, Bailey TG, Perissiou M, Greaves K, Jha P, Leicht AS, Russell FD, Golledge J, Askew CD (2017) Acute inflammatory responses to exercise in patients with abdominal aortic aneurysm. Med Sci Sports Exerc. https://doi.org/10.1249/MSS.0000000000001501

  92. Koh Y, Park KS (2017) Responses of inflammatory cytokines following moderate intensity walking exercise in overweight or obese individuals. J Exerc Rehabil 13(4):472–476

    Article  PubMed  PubMed Central  Google Scholar 

  93. Eder L, Joshi AA, Dey AK, Cook R, Siegel EL, Gladman DD, Mehta NN (2017) TNF-α inhibitors are associated with reduced indices of subclinical atherosclerosis in patients with psoriatic disease. Arthritis Rheum. https://doi.org/10.1002/art.40366

  94. Atzeni F, Carletto A, Foti R, Sebastiani M, Panetta V, Salaffi F, Bonitta G, Iannone F, Gremese E, Govoni M, Marchesoni A, Favalli EG, Gorla R, Ramonda R, Sarzi-Puttini P, Ferraccioli G, Lapadula G; GISEA group (2017) Incidence of cancer in patients with spondyloarthritis treated with anti-TNF drugs. Joint Bone Spine S1297-319X(17)30157-4.

  95. Kleinbongard P, Schulz R, Heusch G (2011) TNFα in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Fail Rev 16(1):49–69

    Article  PubMed  CAS  Google Scholar 

  96. Shi Y, Massagué J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700

    Article  PubMed  CAS  Google Scholar 

  97. Macias MJ, Martin-Malpartida P, Massagué J (2015) Structural determinants of Smad function in TGF-β signaling. Trends Biochem Sci 40(6):296–308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Moustakas A, Heldin CH (2005) Non-Smad TGF-beta signals. J Cell Sci 118(Pt 16):3573–3584

    Article  PubMed  CAS  Google Scholar 

  99. Liu W, Wang X, Mei Z, Gong J, Huang L, Gao X, Zhao Y, Ma J, Qian L (2017) BNIP3L promotes cardiac fibrosis in cardiac fibroblasts through [Ca2+]i-TGF-β-Smad2/3 pathway. Sci Rep 7(1):1906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Lijnen PJ, Petrov VV, Fagard RH (2000) Induction of cardiac fibrosis by transforming growth factor-beta(1). Mol Genet Metab 71(1-2):418–435

    Article  PubMed  CAS  Google Scholar 

  101. Hein S, Arnon E, Kostin S, Schönburg M, Elsässer A, Polyakova V, Bauer EP, Klövekorn WP, Schaper J (2003) Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107(7):984–991

    Article  PubMed  Google Scholar 

  102. Li RK, Li G, Mickle DA, Weisel RD, Merante F, Luss H, Rao V, Christakis GT, Williams WG (1997) Overexpression of transforming growth factor-beta1 and insulin-like growth factor-I in patients with idiopathic hypertrophic cardiomyopathy. Circulation 96(3):874–881

    Article  PubMed  CAS  Google Scholar 

  103. Fielitz J, Hein S, Mitrovic V, Pregla R, Zurbrügg HR, Warnecke C, Schaper J, Fleck E, Regitz-Zagrosek V (2001) Activation of the cardiac renin-angiotensin system and increased myocardial collagen expression in human aortic valve disease. J Am Coll Cardiol 37(5):1443–1449

    Article  PubMed  CAS  Google Scholar 

  104. Dai RP, Dheen ST, He BP, Tay SS (2004) Differential expression of cytokines in the rat heart in response to sustained volume overload. Eur J Heart Fail 6(6):693–703

    Article  PubMed  CAS  Google Scholar 

  105. van Wamel AJ, Ruwhof C, van der Valk-Kokshoorn LJ, Schrier PI, van der Laarse A (2002) Stretch-induced paracrine hypertrophic stimuli increase TGF-beta1 expression in cardiomyocytes. Mol Cell Biochem 236(1-2):147-153.

  106. Yuan J, Chen H, Ge D, Xu Y, Xu H, Yang Y, Gu M, Zhou Y, Zhu J, Ge T, Chen Q, Gao Y, Wang Y, Li X, Zhao Y (2017) Mir-21 promotes cardiac fibrosis after myocardial infarction via targeting Smad7. Cell Physiol Biochem 42(6):2207–2219

    Article  PubMed  CAS  Google Scholar 

  107. Su SA, Yang D, Wu Y, Xie Y, Zhu W, Cai Z, Shen J, Fu Z, Wang Y, Jia L, Wang Y, Wang JA, Xiang M (2017) EphrinB2 regulates cardiac fibrosis through modulating the interaction of Stat3 and TGF-β/Smad3 signaling. Circ Res 121(6):617–627

    Article  PubMed  CAS  Google Scholar 

  108. Yue Y, Meng K, Pu Y, Zhang X (2017) Transforming growth factor beta (TGF-β) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Diabetes Res Clin Pract 133:124–130

    Article  PubMed  CAS  Google Scholar 

  109. Niu HM, Liu CL (2017) The aberrant expression of Smad6 and TGF-β in obesity linked cardiac disease. Eur Rev Med Pharmacol Sci 21(1):138–142

    PubMed  Google Scholar 

  110. Koitabashi N, Danner T, Zaiman AL, Pinto YM, Rowell J, Mankowski J, Zhang D, Nakamura T, Takimoto E, Kass DA (2011) Pivotal role of cardiomyocyte TGF-beta signaling in the murine pathological response to sustained pressure overload. J Clin Invest 121:2301–2312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Zeglinski MR, Roche P, Hnatowich M, Jassal DS, Wigle JT, Czubryt MP, Dixon IMC (2016) TGFβ1 regulates scleraxis expression in primary cardiac myofibroblasts by a Smad-independent mechanism. Am J Physiol Heart Circ Physiol 310:H239–H249

    Article  PubMed  Google Scholar 

  112. Zeglinski MR, Hnatowich M, Jassal DS, Dixon IMC (2015) SnoN as a novel negative regulator of TGF-β/Smad signaling: a target for tailoring organ fibrosis. Am J Physiol Heart Circ Physiol 308(2):H75–H82

    Article  PubMed  CAS  Google Scholar 

  113. Ghavami S, Cunnington RH, Gupta S, Yeganeh B, Filomeno KL, Freed DH, Chen S, Klonisch T, Halayko AJ, Ambrose E, Singal R, Dixon IMC (2015) Autophagy is a regulator of TGF-β1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death Dis 6:1696–1706

    Article  CAS  Google Scholar 

  114. Yeh HM, Lin TT, Yeh CF, Huang HS, Chang SN, Lin JW, Tsai CT, Lai LP, Huang YY, Chu CL (2017) Biomarkers and echocardiography for evaluating the improvement of the ventricular diastolic function after surgical relief of hydronephrosis. PLoS One 12(11):e0188597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Rubiś P, Wiśniowska-Śmiałek S, Dziewięcka E, Rudnicka-Sosin L, Kozanecki A, Podolec P (2017) Prognostic value of fibrosis-related markers in dilated cardiomyopathy: a link between osteopontin and cardiovascular events. Adv Med Sci 63(1):160–166

    Article  PubMed  Google Scholar 

  116. Bansal T, Chatterjee E, Singh J, Ray A, Kundu B, Thankamani V, Sengupta S, Sarkar S (2017) Arjunolic acid, a peroxisome proliferator-activated receptor α agonist, regresses cardiac fibrosis by inhibiting non-canonical TGF-β signaling. J Biol Chem 292(40):16440–16462

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  117. Hillebrand M, Millot N, Sheikhzadeh S, Rybczynski M, Gerth S, Kölbel T, Keyser B, Kutsche K, Robinson PN, Berger J, Mir TS, Zeller T, Blankenberg S, von Kodolitsch Y, Goldmann B (2014) Total serum transforming growth factor-β1 is elevated in the entire spectrum of genetic aortic syndromes. Clin Cardiol 37(11):672–679

    Article  PubMed  PubMed Central  Google Scholar 

  118. Liao S, Bodmer J, Pietras D, Azhar M, Doetschman T, Schultz Jel J (2009) Biological functions of the low and high molecular weight protein isoforms of fibroblast growth factor-2 in cardiovascular development and disease. Dev Dyn 238(2):249–264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Santiago JJ, McNaughton LJ, Koleini N, Ma X, Bestvater B, Nickel BE, Fandrich RR, Wigle JT, Freed DH, Arora RC, Kardami E (2014) High molecular weight fibroblast growth factor-2 in the human heart is a potential target for prevention of cardiac remodeling. PLoS One 9:e97281–e97297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Srisakuldee W, Makazan Z, Nickel BE, Zhang F, Thliveris JA, Pasumarthi KB, Kardami E (2014) The FGF-2-triggered protection of cardiac subsarcolemmal mitochondria from calcium overload is mitochondrial connexin 43-dependent. Cardiovasc Res 103:72–80

    Article  PubMed  CAS  Google Scholar 

  121. Dinarello CA (2011) Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117(14):3720–3732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Opal SM, De Palo VA (2000) Anti-inflammatory cytokines. Chest 117(4):1162–1172

    Article  PubMed  CAS  Google Scholar 

  123. Weisensee D, Bereiter-Hahn J, Schoeppe W, Löw-Friedrich I (1993) Effects of cytokines on the contractility of cultured cardiac myocytes. Int J Immunopharmacol 15(5):581–587

    Article  PubMed  CAS  Google Scholar 

  124. Evans HG, Lewis MJ, Shah AM (1993) Interleukin-1 beta modulates myocardial contraction via dexamethasone sensitive production of nitric oxide. Cardiovasc Res 27(8):1486–1490

    Article  PubMed  CAS  Google Scholar 

  125. Long CS (2001) The role of interleukin-1 in the failing heart. Heart Fail Rev 6(2):81–94

    Article  PubMed  CAS  Google Scholar 

  126. Werdan K, Müller-Werdan U (1996) Elucidating molecular mechanisms of septic cardiomyopathy—the cardiomyocyte model. Mol Cell Biochem 163-164:291–303

    Article  PubMed  CAS  Google Scholar 

  127. Pomerantz BJ, Reznikov LL, Harken AH, Dinarello CA (2001) Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1beta. Proc Natl Acad Sci U S A 98(5):2871–2876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Cha J, Wang Z, Ao L, Zou N, Dinarello CA, Banerjee A, Fullerton DA, Meng X (2008) Cytokines link Toll-like receptor 4 signaling to cardiac dysfunction after global myocardial ischemia. Ann Thorac Surg 85(5):1678–1685

    Article  PubMed  PubMed Central  Google Scholar 

  129. Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, Izawa A, Takahashi Y, Masumoto J, Koyama J, Hongo M, Noda T, Nakayama J, Sagara J, Taniguchi S, Ikeda U (2011) Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123(6):594–604

    Article  PubMed  CAS  Google Scholar 

  130. Yu Z, Wang S, Zhang X, Li Y, Zhao Q, Liu T (2017) Pterostilbene protects against myocardial ischemia/reperfusion injury via suppressing oxidative/nitrative stress and inflammatory response. Int Immunopharmacol 43:7–15

    Article  PubMed  CAS  Google Scholar 

  131. Zhao ZG, Tang ZZ, Zhang WK, Li JG (2015) Protective effects of embelin on myocardial ischemia-reperfusion injury following cardiac arrest in a rabbit model. Inflammation 38(2):527–533

    Article  PubMed  CAS  Google Scholar 

  132. Ebrahimi H, Badalzadeh R, Mohammadi M, Yousefi B (2014) Diosgenin attenuates inflammatory response induced by myocardial reperfusion injury: role of mitochondrial ATP-sensitive potassium channels. J Physiol Biochem 70(2):425–432

    Article  PubMed  CAS  Google Scholar 

  133. Deng Y, Yang M, Xu F, Zhang Q, Zhao Q, Yu H, Li D, Zhang G, Lu A, Cho K, Teng F, Wu P, Wang L, Wu W, Liu X, Guo DA, Jiang B (2015) Combined salvianolic acid B and ginsenoside Rg1 exerts cardioprotection against ischemia/reperfusion injury in rats. PLoS One 10(8):e0135435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Birnbaum Y, Birnbaum GD, Birnbaum I, Nylander S, Ye Y (2016) Ticagrelor and rosuvastatin have additive cardioprotective effects via adenosine. Cardiovasc Drugs Ther 30(6):539–550

    Article  PubMed  CAS  Google Scholar 

  135. Hadi NR, Al-Amran F, Yousif M, Zamil ST (2013) Antiapoptotic effect of simvastatin ameliorates myocardial ischemia/reperfusion injury. ISRN Pharmacol 2013:815094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Varma A, Das A, Hoke NN, Durrant DE, Salloum FN, Kukreja RC (2012) Anti-inflammatory and cardioprotective effects of tadalafil in diabetic mice. PLoS One 7(9):e45243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Grothusen C, Hagemann A, Attmann T, Braesen J, Broch O, Cremer J, Schoettler J (2012) Impact of an interleukin-1 receptor antagonist and erythropoietin on experimental myocardial ischemia/reperfusion injury. Sci World J:737585.

  138. Toldo S, Schatz AM, Mezzaroma E, Chawla R, Stallard TW, Stallard WC, Jahangiri A, Van Tassell BW, Abbate A (2012) Recombinant human interleukin-1 receptor antagonist provides cardioprotection during myocardial ischemia reperfusion in the mouse. Cardiovasc Drugs Ther 26(3):273–276

    Article  PubMed  CAS  Google Scholar 

  139. Ohki S, Oshima K, Tsutsumi H, Koike N, Matsumoto K, Takeyoshi I (2009) The suppression of proinflammatory cytokines improves heart function from non-heart-beating donors following transplantation in a canine model. Int Heart J 50(2):235–245

    Article  PubMed  CAS  Google Scholar 

  140. Suzuki K, Murtuza B, Smolenski RT, Sammut IA, Suzuki N, Kaneda Y, Yacoub MH (2001) Overexpression of interleukin-1 receptor antagonist provides cardioprotection against ischemia-reperfusion injury associated with reduction in apoptosis. Circulation 104:I308–I313

    Article  PubMed  CAS  Google Scholar 

  141. Mauro AG, Mezzaroma E, Torrado J, Kundur P, Joshi P, Stroud K, Quaini F, Lagrasta CA, Abbate A, Toldo S (2017) Reduction of myocardial ischemia-reperfusion injury by inhibiting interleukin-1 alpha. J Cardiovasc Pharmacol 69(3):156–160

    Article  PubMed  CAS  Google Scholar 

  142. Wang Y, Yan X, Mi S, Li Z, Wang Y, Zhu H, Sun X, Zhao B, Zhao C, Zou Y, Hu K, Ding X, Sun A, Ge J (2017) Naoxintong attenuates ischaemia/reperfusion injury through inhibiting NLRP3 inflammasome activation. J Cell Mol Med 21(1):4–12

    Article  PubMed  CAS  Google Scholar 

  143. Huang J, Li Y, Zhang J, Liu Y, Lu Q (2017) The growth hormone secretagogue hexarelin protects rat cardiomyocytes from in vivo ischemia/reperfusion injury through interleukin-1 signaling pathway. Int Heart J 58(2):257–263

    Article  PubMed  Google Scholar 

  144. Lange LG, Schreiner GF (1992) Immune cytokines and cardiac disease. Trends Cardiovasc Med 2(4):145–151

    Article  PubMed  CAS  Google Scholar 

  145. Francis SE, Holden H, Holt CM, Duff GW (1998) Interleukin-1 in myocardium and coronary arteries of patients with dilated cardiomyopathy. J Mol Cell Cardiol 30(2):215–223

    Article  PubMed  CAS  Google Scholar 

  146. Luo B, Wang F, Li B, Dong Z, Liu X, Zhang C, An F (2013) Association of nucleotide-binding oligomerization domain-like receptor 3 inflammasome and adverse clinical outcomes in patients with idiopathic dilated cardiomyopathy. Clin Chem Lab Med 51(7):1521–1528

    Article  PubMed  CAS  Google Scholar 

  147. Krajinovic M, Mestroni L, Severini GM, Pinamonti B, Camerini F, Falaschi A, Giacca M (1994) Absence of linkage between idiopathic dilated cardiomyopathy and candidate genes involved in the immune function in a large Italian pedigree. J Med Genet 31(10):766–771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Munger MA, Johnson B, Amber IJ, Callahan KS, Gilbert EM (1996) Circulating concentrations of proinflammatory cytokines in mild or moderate heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 77(9):723–727

    Article  PubMed  CAS  Google Scholar 

  149. Matsumori A, Yamada T, Suzuki H, Matoba Y, Sasayama S (1994) Increased circulating cytokines in patients with myocarditis and cardiomyopathy. Br Heart J 72(6):561–566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Satoh M, Tamura G, Segawa I, Tashiro A, Hiramori K, Satodate R (1996) Expression of cytokine genes and presence of enteroviral genomic RNA in endomyocardial biopsy tissues of myocarditis and dilated cardiomyopathy. Virchows Arch 427(5):503–509

    Article  PubMed  CAS  Google Scholar 

  151. Eriksson U, Kurrer MO, Sonderegger I, Iezzi G, Tafuri A, Hunziker L, Suzuki S, Bachmaier K, Bingisser RM, Penninger JM, Kopf M (2003) Activation of dendritic cells through the interleukin-1 receptor 1 is critical for the induction of autoimmune myocarditis. J Exp Med 197(3):323–331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Blyszczuk P, Kania G, Dieterle T, Marty RR, Valaperti A, Berthonneche C, Pedrazzini T, Berger CT, Dirnhofer S, Matter CM, Penninger JM, Lüscher TF, Eriksson U (2009) Myeloid differentiation factor-88/interleukin-1 signaling controls cardiac fibrosis and heart failure progression in inflammatory dilated cardiomyopathy. Circ Res 105(9):912–920

    Article  PubMed  CAS  Google Scholar 

  153. Pan HY, Sun HM, Xue LJ, Pan M, Wang YP, Kido H, Zhu JH (2014) Ectopic trypsin in the myocardium promotes dilated cardiomyopathy after influenza A virus infection. Am J Physiol Heart Circ Physiol 307(6):H922–H932

    Article  PubMed  CAS  Google Scholar 

  154. Song ZC, Wang ZS, Bai JH, Li Z, Hu J (2012) Emodin, a naturally occurring anthraquinone, ameliorates experimental autoimmune myocarditis in rats. Tohoku J Exp Med 227(3):225–230

    Article  PubMed  CAS  Google Scholar 

  155. Ukimura A, Terasaki F, Fujioka S, Deguchi H, Kitaura Y, Isomura T, Suma H (2003) Quantitative analysis of cytokine mRNA expression in hearts from patients with nonischemic dilated cardiomyopathy (DCM). J Card Surg 18(Suppl 2):S101–S108

    Article  PubMed  Google Scholar 

  156. Aleksova A, Beltrami AP, Carriere C, Barbati G, Lesizza P, Perrieri-Montanino M, Isola M, Gentile P, Salvioni E, Not T, Agostoni P, G1 S (2017) Interleukin-1β levels predict long-term mortality and need for heart transplantation in ambulatory patients affected by idiopathic dilated cardiomyopathy. Oncotarget 8(15):25131–25140

  157. Kragel AH, Travis WD, Steis RG, Rosenberg SA, Roberts WC (1990) Myocarditis or acute myocardial infarction associated with interleukin-2 therapy for cancer. Cancer 66(7):1513–1516

    Article  PubMed  CAS  Google Scholar 

  158. Eisner RM, Husain A, Clark JI (2004) Case report and brief review: IL-2-induced myocarditis. Cancer Investig 22(3):401–404

    Article  Google Scholar 

  159. Yan W, Song Y, Zhou L, Jiang J, Yang F, Duan Q, Che L, Shen Y, Song H, Wang L (2017) Immune cell repertoire and their mediators in patients with acute myocardial infarction or stable angina pectoris. Int J Med Sci 14(2):181–190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Marriott JB, Goldman JH, Keeling PJ, Baig MK, Dalgleish AG, McKenna WJ (1996) Abnormal cytokine profiles in patients with idiopathic dilated cardiomyopathy and their asymptomatic relatives. Heart 75(3):287–290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Kuethe F, Braun RK, Foerster M, Schlenker Y, Sigusch HH, Kroegel C, Figulla HR (2006) Immunopathogenesis of dilated cardiomyopathy. Evidence for the role of TH2-type CD4+T lymphocytes and association with myocardial HLA-DR expression. J Clin Immunol 26(1):33–39

    Article  PubMed  CAS  Google Scholar 

  162. Cao CM, Xia Q, Tu J, Chen M, Wu S, Wong TM (2004) Cardioprotection of interleukin-2 is mediated via kappa-opioid receptors. J Pharmacol Exp Ther 309(2):560–567

    Article  PubMed  CAS  Google Scholar 

  163. Bouchentouf M, Williams P, Forner KA, Cuerquis J, Michaud V, Paradis P, Schiffrin EL, Galipeau J (2011) Interleukin-2 enhances angiogenesis and preserves cardiac function following myocardial infarction. Cytokine 56(3):732–738

    Article  PubMed  CAS  Google Scholar 

  164. Martins TB, Anderson JL, Muhlestein JB, Horne BD, Carlquist JF, Roberts WL, Carlquist JF (2006) Risk factor analysis of plasma cytokines in patients with coronary artery disease by a multiplexed fluorescent immunoassay. Am J Clin Pathol 125(6):906–913

    Article  PubMed  CAS  Google Scholar 

  165. Szkodzinski J, Hudzik B, Osuch M, Romanowski W, Szygula-Jurkiewicz B, Polonski L, Zubelewicz-Szkodzinska B (2011) Serum concentrations of interleukin-4 and interferon-gamma in relation to severe left ventricular dysfunction in patients with acute myocardial infarction undergoing percutaneous coronary intervention. Heart Vessel 26(4):399–407

    Article  Google Scholar 

  166. Diny NL, Baldeviano GC, Talor MV, Barin JG, Ong S, Bedja D, Hays AG, Gilotra NA, Coppens I, Rose NR, Čiháková D (2017) Eosinophil-derived IL-4 drives progression of myocarditis to inflammatory dilated cardiomyopathy. J Exp Med 214(4):943–957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Roselló-Lletí E, Rivera M, Bertomeu V, Cortés R, Jordán A, González-Molina A (2007) Interleukin-4 and cardiac fibrosis in patients with heart failure. Rev Esp Cardiol 60(7):777–780

    Article  PubMed  Google Scholar 

  168. Peng H, Sarwar Z, Yang XP, Peterson EL, Xu J, Janic B, Rhaleb N, Carretero OA, Rhaleb NE (2015) Profibrotic role for interleukin-4 in cardiac remodeling and dysfunction. Hypertension 66(3):582–589

    Article  PubMed  CAS  Google Scholar 

  169. Shiraishi M, Shintani Y, Shintani Y, Ishida H, Saba R, Yamaguchi A, Adachi H, Yashiro K, Suzuki K (2016) Alternatively activated macrophages determine repair of the infarcted adult murine heart. J Clin Invest 126(6):2151–6216

    Article  PubMed  PubMed Central  Google Scholar 

  170. Shintani Y, Ito T, Fields L, Shiraishi M, Ichihara Y, Sato N, Podaru M, Kainuma S, Tanaka H, Suzuki K (2017) IL-4 as a repurposed biological drug for myocardial infarction through augmentation of reparative cardiac macrophages: proof-of-concept data in mice. Sci Rep 7(1):6877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Wan F, Yan K, Xu D, Qian Q, Liu H, Li M, Xu W (2017) Vγ1+γδT, early cardiac infiltrated innate population dominantly producing IL-4, protect mice against CVB3 myocarditis by modulating IFNγ+ T response. Mol Immunol 81:16–25

    Article  PubMed  CAS  Google Scholar 

  172. Zhang Y, Zhang M, Li X, Tang Z, Wang X, Zhong M, Suo Q, Zhang Y, Lv K (2016) Silencing micro RNA-155 attenuates cardiac injury and dysfunction in viral myocarditis via promotion of M2 phenotype polarization of macrophages. Sci Rep 6:22613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Kosmala W, Przewlocka-Kosmala M, Mazurek W (2005) Proinflammatory cytokines and myocardial viability in patients after acute myocardial infarction. Int J Cardiol 101(3):449–456

    Article  PubMed  Google Scholar 

  174. Wilkowska A, Pikuła M, Rynkiewicz A, Wdowczyk-Szulc J, Trzonkowski P, Landowski J (2015) Increased plasma pro-inflammatory cytokine concentrations after myocardial infarction and the presence of depression during next 6-months. Psychiatr Pol 49(3):455–464

    Article  PubMed  Google Scholar 

  175. Zhao XJ, Liu XL, He GX, Xu HP (2014) Effects of single-dose atorvastatin on interleukin-6, interferon gamma, and myocardial no-reflow in a rabbit model of acute myocardial infarction and reperfusion. Braz J Med Biol Res 47(3):245–251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Chandrasekar B, Mitchell DH, Colston JT, Freeman GL (1999) Regulation of CCAAT/Enhancer binding protein, interleukin-6, interleukin-6 receptor, and gp130 expression during myocardial ischemia/reperfusion. Circulation 99(3):427–433

    Article  PubMed  CAS  Google Scholar 

  177. Anderson DR, Poterucha JT, Mikuls TR, Duryee MJ, Garvin RP, Klassen LW, Shurmur SW, Thiele GM (2013) IL-6 and its receptors in coronary artery disease and acute myocardial infarction. Cytokine 62(3):395–400

    Article  PubMed  CAS  Google Scholar 

  178. Fahmi A, Smart N, Punn A, Jabr R, Marber M, Heads R (2013) p42/p44-MAPK and PI3K are sufficient for IL-6 family cytokines/gp130 to signal to hypertrophy and survival in cardiomyocytes in the absence of JAK/STAT activation. Cell Signal 25(4):898–909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Nishino M, Kimura T, Kanda T, Kotajima N, Yoshida A, Kuwabara A, Tamama K, Fukumura Y, Kobayashi I (2000) Circulating interleukin-6 significantly correlates to thyroid hormone in acute myocardial infarction but not in chronic heart failure. J Endocrinol Investig 23(8):509–514

    Article  CAS  Google Scholar 

  180. Debrunner M, Schuiki E, Minder E, Straumann E, Naegeli B, Mury R, Bertel O, Frielingsdorf J (2008) Proinflammatory cytokines in acute myocardial infarction with and without cardiogenic shock. Clin Res Cardiol 97(5):298–305

    Article  PubMed  CAS  Google Scholar 

  181. Fanola CL, Morrow DA, Cannon CP, Jarolim P, Lukas MA, Bode C, Hochman JS, Goodrich EL, Braunwald E, O'Donoghue ML (2017) Interleukin-6 and the risk of adverse outcomes in patients after an acute coronary syndrome: observations from the SOLID-TIMI 52 (Stabilization of Plaque Using Darapladib-Thrombolysis in Myocardial Infarction 52) trial. J Am Heart Assoc 6(10):e005637

    Article  PubMed  PubMed Central  Google Scholar 

  182. Held C, White HD, Stewart RAH, Budaj A, Cannon CP, Hochman JS, Koenig W, Siegbahn A, Steg PG, Soffer J, Weaver WD, Östlund O, Wallentin L, STABILITY Investigators (2017) Inflammatory biomarkers interleukin-6 and C-reactive protein and outcomes in stable coronary heart disease: experiences from the STABILITY (Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy) trial. J Am Heart Assoc 6(10):e005077

    Article  PubMed  PubMed Central  Google Scholar 

  183. Mayfield AE, Kanda P, Nantsios A, Parent S, Mount S, Dixit S, Ye B, Seymour R, Stewart DJ, Davis DR (2017) Interleukin-6 mediates post-infarct repair by cardiac explant-derived stem cells. Theranostics 7(19):4850–4861 eCollection 2017

    Article  PubMed  PubMed Central  Google Scholar 

  184. Parissis JT, Adamopoulos SN, Venetsanou KF, Karas SM, Kremastinos DT (2003) Elevated plasma amylase levels in advanced chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy: correlation with circulating interleukin-6 activity. J Interf Cytokine Res 23(6):329–333

    Article  CAS  Google Scholar 

  185. Högye M, Mándi Y, Csanády M, Sepp R, Buzás K (2004) Comparison of circulating levels of interleukin-6 and tumor necrosis factor-alpha in hypertrophic cardiomyopathy and in idiopathic dilated cardiomyopathy. Am J Cardiol 94(2):249–251

    Article  PubMed  CAS  Google Scholar 

  186. Liaquat A, Asifa GZ, Zeenat A, Javed Q (2014) Polymorphisms of tumor necrosis factor-alpha and interleukin-6 gene and C-reactive protein profiles in patients with idiopathic dilated cardiomyopathy. Ann Saudi Med 34(5):407–414

    Article  PubMed  PubMed Central  Google Scholar 

  187. Liaquat A, Shauket U, Ahmad W, Javed Q (2015) The tumor necrosis factor-α -238G/A and IL-6 -572G/C gene polymorphisms and the risk of idiopathic dilated cardiomyopathy: a meta-analysis of 25 studies including 9493 cases and 13,971 controls. Clin Chem Lab Med 53(2):307–318

    Article  PubMed  CAS  Google Scholar 

  188. Morgan DA, Ruscetti FW, Gallo R (1976) Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193:1007–1008

    Article  PubMed  CAS  Google Scholar 

  189. Kim HP, Imbert J, Leonard WJ (2006) Both integrated and differential regulation of components of the IL-2/IL-2 receptor system. Cytokine Growth Factor Rev 17(5):349–366

    Article  PubMed  CAS  Google Scholar 

  190. Liao W, Lin JX, Leonard WJ (2011) IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr Opin Immunol 23(5):598–604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Citterio G, Fragasso G, Rossetti E, Di Lucca G, Bucci E, Foppoli M, Guerrieri R, Matteucci P, Polastri D, Scaglietti U, Tresoldi M, Chierchia SL, Rugarli C (1996) Isolated left ventricular filling abnormalities may predict interleukin-2-induced cardiovascular toxicity. J Immunother Emphasis Tumor Immunol 19(2):134–141

    Article  PubMed  CAS  Google Scholar 

  192. Mazzone A, De Servi S, Vezzoli M, Fossati G, Mazzucchelli I, Gritti D, Ottini E, Mussini A, Specchia G (1999) Plasma levels of interleukin 2, 6, 10 and phenotypic characterization of circulating T lymphocytes in ischemic heart disease. Atherosclerosis 145(2):369–374

    Article  PubMed  CAS  Google Scholar 

  193. Quinaglia e Silva JC, Coelho-Filho OR, Andrade JM, Quinaglia T, Modolo RG, Almeida BO, van der Geest RJ, Jerosch-Herold M, Coelho OR, Sposito AC, Brasilia Heart Study Group (2014) Peri-infarct zone characterized by cardiac magnetic resonance imaging is directly associated with the inflammatory activity during acute phase myocardial infarction. Inflammation 37(3):678–685

    PubMed  CAS  Google Scholar 

  194. Li SH, Chen WJ, Yan M, Shu YW, Liao YH (2015) Expression of coinhibitory PD-L1 on CD4+CD25+FOXP3+ regulatory T cells is elevated in patients with acute coronary syndrome. Coron Artery Dis 26(7):598–603

    Article  PubMed  Google Scholar 

  195. Nabata T, Fukuo K, Morimoto S, Kitano S, Momose N, Hirotani A, Nakahashi T, Nishibe A, Hata S, Niinobu T, Suhara T, Shimizu M, Ohkuma H, Sakurai S, Nishimaki H, Ogihara T (1997) Interleukin-2 modulates the responsiveness to angiotensin II in cultured vascular smooth muscle cells. Atherosclerosis 133(1):23–30

    Article  PubMed  CAS  Google Scholar 

  196. Blum A, Sclarovsky S, Shohat B (1995) T lymphocyte activation in stable angina pectoris and after percutaneous transluminal coronary angioplasty. Circulation 91(1):20–22

    Article  PubMed  CAS  Google Scholar 

  197. Abbate A, Vecile E, Fiotti N, Giansante C, Guarnieri G, Di Sciascio G, Dobrina A (2003) Plasma concentrations of interleukin-2 soluble receptor in mild ischaemic left ventricular dysfunction. Eur J Heart Fail 5(1):23–25

    Article  PubMed  CAS  Google Scholar 

  198. Limas CJ, Goldenberg IF, Limas C (1995) Soluble interleukin-2 receptor levels in patients with dilated cardiomyopathy. Correlation with disease severity and cardiac autoantibodies. Circulation 91(3):631–634

    Article  PubMed  CAS  Google Scholar 

  199. Caforio AL, Goldman JH, Baig MK, Mahon NJ, Haven AJ, Souberbielle BE, Holt DW, Dalgleish AG, McKenna WJ (2001) Elevated serum levels of soluble interleukin-2 receptor, neopterin and beta-2-microglobulin in idiopathic dilated cardiomyopathy: relation to disease severity and autoimmune pathogenesis. Eur J Heart Fail 3(2):155–163

    Article  PubMed  CAS  Google Scholar 

  200. Koch M, Savvatis K, Scheeler M, Dhayat S, Bonaventura K, Pohl T, Riad A, Bulfone-Paus S, Schultheiss HP, Tschöpe C (2010) Immunosuppression with an interleukin-2 fusion protein leads to improved LV function in experimental ischemic cardiomyopathy. Int Immunopharmacol 10(2):207–212

    Article  PubMed  CAS  Google Scholar 

  201. Borg N, Alter C, Görldt N, Jacoby C, Ding Z, Steckel B, Quast C, Bönner F, Friebe D, Temme S, Flögel U, Schrader J (2017) CD73 on T cells orchestrates cardiac wound healing after myocardial infarction by purinergic metabolic reprogramming. Circulation 136(3):297–313

    Article  PubMed  CAS  Google Scholar 

  202. Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE (1999) The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol 17:701–738

    Article  PubMed  CAS  Google Scholar 

  203. Mowen KA, Glimcher LH (2004) Signaling pathways in Th2 development. Immunol Rev 202:203–222

    Article  PubMed  CAS  Google Scholar 

  204. Luzina IG, Keegan AD, Heller NM, Rook GAW, Shea-Donohue T, Atamas SP (2012) Regulation of inflammation by interleukin-4: a review of “alternatives”. J Leukoc Biol 92(4):753–764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Hart PH, Vitti GF, Burgess DR, Whitty GA, Piccoli DS, Hamilton JA (1989) Potential antiinflammatory effects of interleukin 4: suppression of human monocyte tumor necrosis factor alpha, interleukin 1, and prostaglandin E2. Proc Natl Acad Sci U S A 86:3803–3807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Major J, Fletcher JE, Hamilton TA (2002) IL-4 pretreatment selectively enhances cytokine and chemokine production in lipopolysaccharide-stimulated mouse peritoneal macrophages. J Immunol 168:2456–2463

    Article  PubMed  CAS  Google Scholar 

  207. Paffen E, Medina P, de Visser MC, van Wijngaarden A, Zorio E, Estellés A, Rosendaal FR, España F, Bertina RM, Doggen CJ (2008) The -589C>T polymorphism in the interleukin-4 gene (IL-4) is associated with a reduced risk of myocardial infarction in young individuals. J Thromb Haemost 6(10):1633–1638

    Article  PubMed  CAS  Google Scholar 

  208. Cheng X, Liao YH, Ge H, Li B, Zhang J, Yuan J, Wang M, Liu Y, Guo Z, Chen J, Zhang J, Zhang L (2005) TH1/TH2 functional imbalance after acute myocardial infarction: coronary arterial inflammation or myocardial inflammation. J Clin Immunol 25(3):246–253

    Article  PubMed  CAS  Google Scholar 

  209. Moro C, Jouan MG, Rakotovao A, Toufektsian MC, Ormezzano O, Nagy N, Tosaki A, de Leiris J, Boucher F (2007) Delayed expression of cytokines after reperfused myocardial infarction: possible trigger for cardiac dysfunction and ventricular remodeling. Am J Physiol Heart Circ Physiol 293(5):H3014–H3019

    Article  PubMed  CAS  Google Scholar 

  210. Lachtermacher S, Esporcatte BL, Montalvão F, Costa PC, Rodrigues DC, Belem L, Rabischoffisky A, Faria Neto HC, Vasconcellos R, Iacobas S, Iacobas DA, Dohmann HF, Spray DC, Goldenberg RC, Campos-de-Carvalho AC (2010) Cardiac gene expression and systemic cytokine profile are complementary in a murine model of post-ischemic heart failure. Braz J Med Biol Res 43(4):377–389

    Article  PubMed  CAS  Google Scholar 

  211. Zhang S, Liu X, Sun C, Yang J, Wang L, Liu J, Gong L, Jing Y (2016) Apigenin attenuates experimental autoimmune myocarditis by modulating Th1/Th2 cytokine balance in mice. Inflammation 39(2):678–686

    Article  PubMed  CAS  Google Scholar 

  212. Bossa AS, Salemi VM, Ribeiro SP, Rosa DS, Ferreira LR, Ferreira SC, Nishiya AS, Mady C, Kalil J, Cunha-Neto E (2014) Plasma cytokine profile in tropical endomyocardial fibrosis: predominance of TNF-a, IL-4 and IL-10. PLoS One 9(10):e108984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Tanaka T, Narazaki M, Kishimoto T (2014) IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 6(10):a016295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Mihara M, Hashizume M, Yoshida H, Suzuki M, Shiina M (2012) IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin Sci (Lond) 122(4):143–159

    Article  CAS  Google Scholar 

  215. Miyao Y, Yasue H, Ogawa H, Misumi I, Masuda T, Sakamoto T, Morita E (1993) Elevated plasma interleukin-6 levels in patients with acute myocardial infarction. Am Heart J 126(6):1299–1304

    Article  PubMed  CAS  Google Scholar 

  216. Jong WM, Ten Cate H, Linnenbank AC, de Boer OJ, Reitsma PH, de Winter RJ, Zuurbier CJ (2016) Reduced acute myocardial ischemia-reperfusion injury in IL-6-deficient mice employing a closed-chest model. Inflamm Res 65(6):489–499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Hartman MH, Vreeswijk-Baudoin I, Groot HE, van de Kolk KW, de Boer RA, Mateo Leach I, Vliegenthart R, Sillje HH, van der Harst P (2016) Inhibition of interleukin-6 receptor in a murine model of myocardial ischemia-reperfusion. PLoS One 11(12):e0167195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Kleveland O, Kunszt G, Bratlie M, Ueland T, Broch K, Holte E, Michelsen AE, Bendz B, Amundsen BH6, Espevik T9, Aakhus S10, Damås JK9, Aukrust P11, Wiseth R6, Gullestad L (2016) Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-ST-elevation myocardial infarction: a double-blind, randomized, placebo-controlled phase 2 trial. Eur Heart J 37(30):2406–2413

    Article  PubMed  CAS  Google Scholar 

  219. Holte E, Kleveland O, Ueland T, Kunszt G, Bratlie M, Broch K, Michelsen AE, Bendz B, Amundsen BH, Aakhus S, Damås JK, Gullestad L, Aukrust P, Wiseth R (2017) Effect of interleukin-6 inhibition on coronary microvascular and endothelial function in myocardial infarction. Heart 103(19):1521–1527

    Article  PubMed  CAS  Google Scholar 

  220. Gabriel AS, Martinsson A, Wretlind B, Ahnve S (2004) IL-6 levels in acute and post myocardial infarction: their relation to CRP levels, infarction size, left ventricular systolic function, and heart failure. Eur J Intern Med 15(8):523–528

    Article  PubMed  CAS  Google Scholar 

  221. Dawn B, Xuan YT, Guo Y, Rezazadeh A, Stein AB, Hunt G, Wu WJ, Tan W, Bolli R (2004) IL-6 plays an obligatory role in late preconditioning via JAK-STAT signaling and upregulation of iNOS and COX-2. Cardiovasc Res 64(1):61–71

    Article  PubMed  CAS  Google Scholar 

  222. Roig E, Orús J, Paré C, Azqueta M, Filella X, Perez-Villa F, Heras M, Sanz G (1998) Serum interleukin-6 in congestive heart failure secondary to idiopathic dilated cardiomyopathy. Am J Cardiol 82(5):688–690

    Article  PubMed  CAS  Google Scholar 

  223. Matsumura T, Tsushima K, Ohtaki E, Misu K, Tohbaru T, Asano R, Nagayama M, Kitahara K, Umemura J, Sumiyoshi T, Hosoda S (2002) Effects of carvedilol on plasma levels of interleukin-6 and tumor necrosis factor-alpha in nine patients with dilated cardiomyopathy. J Cardiol 39(5):253–257

    PubMed  Google Scholar 

  224. Plenz G, Song ZF, Reichenberg S, Tjan TD, Robenek H, Deng MC (1998) Left-ventricular expression of interleukin-6 messenger-RNA higher in idiopathic dilated than in ischemic cardiomyopathy. Thorac Cardiovasc Surg 46(4):213–216

    Article  PubMed  CAS  Google Scholar 

  225. Ma LP, Premaratne G, Bollano E, Lindholm C, Fu M (2012) Interleukin-6-deficient mice resist development of experimental autoimmune cardiomyopathy induced by immunization of β1-adrenergic receptor. Int J Cardiol 155(1):20–25

    Article  PubMed  Google Scholar 

  226. Fontes JA, Rose NR, Čiháková D (2015) The varying faces of IL-6: from cardiac protection to cardiac failure. Cytokine 74(1):62–68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Turner MD, Nedjai B, Hurst T, Pennington DJ (2014) Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 1843(11):2563–2582

    Article  PubMed  CAS  Google Scholar 

  228. Alfaro C, Sanmamed MF, Rodríguez-Ruiz ME, Teijeira Á, Oñate C, González Á, Ponz M, Schalper KA, Pérez-Gracia JL, Melero I (2017) Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat Rev 60:24–31

    Article  PubMed  CAS  Google Scholar 

  229. Oz MC, Liao H, Naka Y, Seldomridge A, Becker DN, Michler RE, Smith CR, Rose EA, Stern DM, Pinsky DJ (1995) Ischemia-induced interleukin-8 release after human heart transplantation. A potential role for endothelial cells. Circulation 92:II428–II432

    Article  PubMed  CAS  Google Scholar 

  230. Wan S, Marchant A, DeSmet JM, Antoine M, Zhang H, Vachiery JL, Goldman M, Vincent JL, LeClerc JL (1996) Human cytokine responses to cardiac transplantation and coronary artery bypass grafting. J Thorac Cardiovasc Surg 111(2):469–477

    Article  PubMed  CAS  Google Scholar 

  231. Abe Y, Kawakami M, Kuroki M, Yamamoto T, Fujii M, Kobayashi H, Yaginuma T, Kashii A, Saito M, Matsushima K (1993) Transient rise in serum interleukin-8 concentration during acute myocardial infarction. Br Heart J 70(2):132–134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Dybdahl B, Slørdahl SA, Waage A, Kierulf P, Espevik T, Sundan A (2005) Myocardial ischaemia and the inflammatory response: release of heat shock protein 70 after myocardial infarction. Heart 91(3):299–304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Zarrouk-Mahjoub S, Zaghdoudi M, Amira Z, Chebi H, Khabouchi N, Finsterer J, Mechmeche R, Ghazouani E (2016) Pro- and anti-inflammatory cytokines in post-infarction left ventricular remodeling. Int J Cardiol 221:632–636

    Article  PubMed  CAS  Google Scholar 

  234. Lu L, Wei P, Cao Y, Zhang Q, Liu M, Liu XD, Wang ZL, Zhang PY (2016) Effect of total peony glucoside pretreatment on NF-κB and ICAM-1 expression in myocardial tissue of rat with myocardial ischemia-reperfusion injury. Genet Mol Res 15(4)

  235. Kukielka GL, Smith CW, LaRosa GJ, Manning AM, Mendoza LH, Daly TJ, Hughes BJ, Youker KA, Hawkins HK, Michael LH et al (1995) Interleukin-8 gene induction in the myocardium after ischemia and reperfusion in vivo. J Clin Invest 95(1):89–103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Hu L, Cai N, Jia H (2017) Pterostilbene attenuates myocardial ischemia-reperfusion injury via the phosphatidylinositol 3'-kinase-protein kinase B signaling pathway. Exp Ther Med 14(6):5509–5514

    PubMed  PubMed Central  Google Scholar 

  237. Boyle EM Jr, Kovacich JC, Hèbert CA, Canty TG Jr, Chi E, Morgan EN, Pohlman TH, Verrier ED (1998) Inhibition of interleukin-8 blocks myocardial ischemia-reperfusion injury. J Thorac Cardiovasc Surg 116(1):114–121

    Article  PubMed  CAS  Google Scholar 

  238. Ockaili R, Natarajan R, Salloum F, Fisher BJ, Jones D, Fowler AA 3rd, Kukreja RC (2005) HIF-1 activation attenuates postischemic myocardial injury: role for heme oxygenase-1 in modulating microvascular chemokine generation. Am J Physiol Heart Circ Physiol 289(2):H542–H548

    Article  PubMed  CAS  Google Scholar 

  239. Cavusoglu E, Marmur JD, Yanamadala S, Chopra V, Hegde S, Nazli A, Singh KP, Zhang M, Eng C (2015) Elevated baseline plasma IL-8 levels are an independent predictor of long-term all-cause mortality in patients with acute coronary syndrome. Atherosclerosis 242(2):589–594

    Article  PubMed  CAS  Google Scholar 

  240. Zhang X, Zhang B, Zhang M, Han Y, Zhao Y, Meng Z, Li X, Kang J, Yan C (2011) Interleukin-8 gene polymorphism is associated with acute coronary syndrome in the Chinese Han population. Cytokine 56(2):188–191

    Article  PubMed  CAS  Google Scholar 

  241. Dominguez-Rodriguez A, Abreu-Gonzalez P, Garcia-Gonzalez M, Ferrer J (2006) Prognostic value of interleukin-8 as a predictor of heart failure in patients with myocardial infarction and percutaneous intervention. Int J Cardiol 111(1):158-160.

  242. Husebye T, Eritsland J, Arnesen H, Bjørnerheim R, Mangschau A, Seljeflot I, Andersen GØ (2014) Association of interleukin 8 and myocardial recovery in patients with ST-elevation myocardial infarction complicated by acute heart failure. PLoS One 9(11):e112359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Velásquez IM, Frumento P, Johansson K, Berglund A, de Faire U, Leander K, Gigante B (2014) Association of interleukin 8 with myocardial infarction: results from the Stockholm Heart Epidemiology Program. Int J Cardiol 172(1):173–178

    Article  PubMed  Google Scholar 

  244. Frangogiannis NG, Entman ML (2005) Chemokines in myocardial ischemia. Trends Cardiovasc Med 15(5):163–169

    Article  PubMed  CAS  Google Scholar 

  245. Haleagrahara N, Chakravarthi S, Mathews L (2011) Insulin like growth factor-1 (IGF-1) causes overproduction of IL-8, an angiogenic cytokine and stimulates neovascularization in isoproterenol-induced myocardial infarction in rats. Int J Mol Sci 12(12):8562–8574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Schömig K, Busch G, Steppich B, Sepp D, Kaufmann J, Stein A, Schömig A, Ott I (2006) Interleukin-8 is associated with circulating CD133+ progenitor cells in acute myocardial infarction. Eur Heart J 27(9):1032–1037

    Article  PubMed  CAS  Google Scholar 

  247. Zhao X, Zhang W, Xing D, Li P, Fu J, Gong K, Hage FG, Oparil S, Chen YF (2013) Endothelial cells overexpressing IL-8 receptor reduce cardiac remodeling and dysfunction following myocardial infarction. Am J Physiol Heart Circ Physiol 305(4):H590–H598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Kaur K, Sharma AK, Singal PK (2006) Significance of changes in TNF-alpha and IL-10 levels in the progression of heart failure subsequent to myocardial infarction. Am J Physiol Heart Circ Physiol 291(1):H106–H113

    Article  PubMed  CAS  Google Scholar 

  249. El Azab SR, Rosseel PM, de Lange JJ, Groeneveld AB, van Strik R, van Wijk EM, Scheffer GJ (2002) Dexamethasone decreases the pro- to anti-inflammatory cytokine ratio during cardiac surgery. Br J Anaesth 88(4):496–501

    Article  PubMed  Google Scholar 

  250. Adamopoulos S, Parissis JT, Paraskevaidis I, Karatzas D, Livanis E, Georgiadis M, Karavolias G, Mitropoulos D, Degiannis D, Kremastinos DT (2003) Effects of growth hormone on circulating cytokine network, and left ventricular contractile performance and geometry in patients with idiopathic dilated cardiomyopathy. Eur Heart J 24(24):2186–2196

    Article  PubMed  CAS  Google Scholar 

  251. Zhang W, Xing B, Yang L, Shi J, Zhou X (2015) Icaritin attenuates myocardial ischemia and reperfusion injury via anti-inflammatory and anti-oxidative stress effects in rats. Am J Chin Med 43(6):1083–1097

    Article  PubMed  CAS  Google Scholar 

  252. Chang C, Ji Q, Wu B, Yu K, Zeng Q, Xin S, Liu J, Zhou Y (2015) Chemerin 15-Ameliorated cardiac ischemia-reperfusion injury is associated with the induction of alternatively activated macrophages. Mediat Inflamm 2015:563951

    Article  CAS  Google Scholar 

  253. Cambier L, de Couto G, Ibrahim A, Echavez AK, Valle J, Liu W, Kreke M, Smith RR, Marbán L, Marbán E (2017) Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion. EMBO Mol Med 9(3):337–352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  254. Chen H, Jing XY, Shen YJ, Wang TL, Ou C, Lu SF, Cai Y, Li Q, Ding YJ, Yu XC, Zhu BM (2018) Stat5-dependent cardioprotection in late remote ischemia preconditioning. Cardiovasc Res doi. https://doi.org/10.1093/cvr/cvy014 [Epub ahead of print]

  255. Dhingra S, Bagchi AK, Ludke AL, Sharma AK, Singal PK (2011) Akt regulates IL-10 mediated suppression of TNFα-induced cardiomyocyte apoptosis by upregulating Stat3 phosphorylation. PLoS One 6(9):e25009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. Dhingra S, Sharma AK, Singla DK, Singal PK (2007) p38 and ERK1/2 MAPKs mediate the interplay of TNF-alpha and IL-10 in regulating oxidative stress and cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 293(6):H3524–H3531

    Article  PubMed  CAS  Google Scholar 

  257. Dhingra S, Sharma AK, Arora RC, Slezak J, Singal PK (2009) IL-10 attenuates TNF-alpha-induced NF kappaB pathway activation and cardiomyocyte apoptosis. Cardiovasc Res 82(1):59–66

    Article  PubMed  CAS  Google Scholar 

  258. Bagchi AK, Sharma A, Dhingra S, Lehenbauer Ludke AR, Al-Shudiefat AA, Singal PK (2013) Interleukin-10 activates Toll-like receptor 4 and requires MyD88 for cardiomyocyte survival. Cytokine 61(1):304–314

    Article  PubMed  CAS  Google Scholar 

  259. Bagchi AK, Akolkar G, Mandal S, Ayyappan P, Yang X, Singal PK (2017) Toll-like receptor 2 dominance over Toll-like receptor 4 in stressful conditions for its detrimental role in the heart. Am J Physiol Heart Circ Physiol 312(6):H1238–H1247

    Article  PubMed  Google Scholar 

  260. Kesherwani V, Chavali V, Hackfort BT, Tyagi SC, Mishra PK (2015) Exercise ameliorates high fat diet induced cardiac dysfunction by increasing interleukin 10. Front Physiol 6:124

    Article  PubMed  PubMed Central  Google Scholar 

  261. Ukimura A, Terasaki F, Fujioka S, Deguchi H, Kitaura Y, Isomura T, Suma H (2003) Quantitative analysis of cytokine mRNA expression in hearts from patients with nonischemic dilated cardiomyopathy (DCM). J Card Surg 18:S101–S108

    Article  PubMed  Google Scholar 

  262. Guo Y, Cen Z, Wei B, Wu W, Zhou Q (2015) Increased circulating interleukin 10-secreting B cells in patients with dilated cardiomyopathy. Int J Clin Exp Pathol 8(7):8107–8114

    PubMed  PubMed Central  CAS  Google Scholar 

  263. Izumi T, Nishii M (2012) Diagnostic and prognostic biomarkers in acute myocarditis. Interleukin-10. Herz 37(6):627–631

    Article  PubMed  CAS  Google Scholar 

  264. Santoro F, Tarantino N, Ferraretti A, Ieva R, Musaico F, Guastafierro F, Di Martino L, Di Biase M, Brunetti ND (2016) Serum interleukin 6 and 10 levels in Takotsubo cardiomyopathy: increased admission levels may predict adverse events at follow-up. Atherosclerosis 254:28–34

    Article  PubMed  CAS  Google Scholar 

  265. Seta Y, Kanda T, Tanaka T, Arai M, Sekiguchi K, Yokoyama T, Kurimoto M, Tamura J, Kurabayashi M (2000) Interleukin 18 in acute myocardial infarction. Heart 84(6):668

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Kawasaki D, Tsujino T, Morimoto S, Masai M, Masutani M, Ohyanagi M, Kashiwamura S, Okamura H, Masuyama T (2005) Plasma interleukin-18 concentration: a novel marker of myocardial ischemia rather than necrosis in humans. Coron Artery Dis 16(7):437–441

    Article  PubMed  Google Scholar 

  267. Yamaoka-Tojo M, Tojo T, Inomata T, Machida Y, Osada K, Izumi T (2002) Circulating levels of interleukin 18 reflect etiologies of heart failure: Th1/Th2 cytokine imbalance exaggerates the pathophysiology of advanced heart failure. J Card Fail 8(1):21–27

    Article  PubMed  CAS  Google Scholar 

  268. Woldbaek PR, Tønnessen T, Henriksen UL, Florholmen G, Lunde PK, Lyberg T, Christensen G (2003) Increased cardiac IL-18 mRNA, pro-IL-18 and plasma IL-18 after myocardial infarction in the mouse; a potential role in cardiac dysfunction. Cardiovasc Res 59(1):122–131

    Article  PubMed  CAS  Google Scholar 

  269. Mallat Z, Heymes C, Corbaz A, Logeart D, Alouani S, Cohen-Solal A, Seidler T, Hasenfuss G, Chvatchko Y, Shah AM, Tedgui A (2004) Evidence for altered interleukin 18 (IL)-18 pathway in human heart failure. FASEB J 18(14):1752–1754

    Article  PubMed  CAS  Google Scholar 

  270. Dinarello CA (2001) Novel targets for interleukin 18 binding protein. Ann Rheum Dis 60 Suppl 3:iii18-24.

  271. Gu H, Xie M, Xu L, Zheng X, Yang Y, Lv X (2015) The protective role of interleukin-18 binding protein in a murine model of cardiac ischemia/reperfusion injury. Transpl Int 28(12):1436–1444

    Article  PubMed  CAS  Google Scholar 

  272. Venkatachalam K, Prabhu SD, Reddy VS, Boylston WH, Valente AJ, Chandrasekar B (2009) Neutralization of interleukin-18 ameliorates ischemia/reperfusion-induced myocardial injury. J Biol Chem 284(12):7853–7865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  273. Westphal E, Rohrbach S, Buerke M, Behr H, Darmer D, Silber RE, Werdan K, Loppnow H (2008) Altered interleukin-1 receptor antagonist and interleukin-18 mRNA expression in myocardial tissues of patients with dilatated cardiomyopathy. Mol Med 14(1-2):55–63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  274. Kanda T, Tanaka T, Sekiguchi K, Seta Y, Kurimoto M, Wilson McManus JE, Nagai R, Yang D, McManus BM, Kobayashi I (2000) Effect of interleukin-18 on viral myocarditis: enhancement of interferon- gamma and natural killer cell activity. J Mol Cell Cardiol 32(12):2163–2171

    Article  PubMed  CAS  Google Scholar 

  275. Yoshida A, Kand T, Tanaka T, Yokoyama T, Kurimoto M, Tamura J, Kobayashi I (2002) Interleukin-18 reduces expression of cardiac tumor necrosis factor-alpha and atrial natriuretic peptide in a murine model of viral myocarditis. Life Sci 70(11):1225–1234

    Article  PubMed  CAS  Google Scholar 

  276. Glück B, Schmidtke M, Merkle I, Stelzner A, Gemsa D (2001) Persistent expression of cytokines in the chronic stage of CVB3-induced myocarditis in NMRI mice. J Mol Cell Cardiol 33(9):1615–1626

    Article  PubMed  CAS  Google Scholar 

  277. Fairweather D, Yusung S, Frisancho S, Barrett M, Gatewood S, Steele R, Rose NR (2003) IL-12 receptor beta 1 and Toll-like receptor 4 increase IL-1 beta- and IL-18-associated myocarditis and coxsackievirus replication. J Immunol 170(9):4731–4737

    Article  PubMed  CAS  Google Scholar 

  278. Esper L, Utsch L, Soriani FM, Brant F, Esteves Arantes RM, Campos CF, Pinho V, Souza DG, Teixeira MM, Tanowitz HB, Vieira LQ, Machado FS (2014) Regulatory effects of IL-18 on cytokine profiles and development of myocarditis during Trypanosoma cruzi infection. Microbes Infect 16(6):481–490

    Article  PubMed  CAS  Google Scholar 

  279. van Hout GP, Bosch L, Ellenbroek GH, de Haan JJ, van Solinge WW, Cooper MA, Arslan F, de Jager SC, Robertson AA, Pasterkamp G, Hoefer IE (2017) The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur Heart J 38(11):828–836

    PubMed  Google Scholar 

  280. Su Z, Lin R, Chen Y, Shu X, Zhang H, Nie R, Wang J, Xie S (2015) Knockdown of EMMPRIN improves adverse remodeling mediated by IL-18 in the post-infarcted heart. Am J Transl Res 7(10):1908–1916

    PubMed  PubMed Central  CAS  Google Scholar 

  281. Mosser DM, Zhang X (2008) Interleukin-10: new perspectives on an old cytokine. Immunol Rev 226:205–218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  282. Kaur K, Dhingra S, Slezak J, Sharma AK, Bajaj A, Singal PK (2009) Biology of TNFalpha and IL-10, and their imbalance in heart failure. Heart Fail Rev 14(2):113–123

    Article  PubMed  CAS  Google Scholar 

  283. Huber SA, Feldman AM, Sartini D (2006) Coxsackievirus B3 induces T regulatory cells, which inhibit cardiomyopathy in tumor necrosis factor-alpha transgenic mice. Circ Res 99(10):1109–1116

    Article  PubMed  CAS  Google Scholar 

  284. Dinarello CA (2000) Interleukin-18, a proinflammatory cytokine. Eur Cytokine Netw 11(3):483–486

    PubMed  CAS  Google Scholar 

  285. Biet F, Locht C, Kremer L (2002) Immunoregulatory functions of interleukin 18 and its role in defense against bacterial pathogens. J Mol Med 80(3):147–162

    Article  PubMed  CAS  Google Scholar 

  286. Chandrasekar B, Colston JT, de la Rosa SD, Rao PP, Freeman GL (2003) TNF-alpha and H2O2 induce IL-18 and IL-18R beta expression in cardiomyocytes via NF-kappa B activation. Biochem Biophys Res Commun 303(4):1152–1158

    Article  PubMed  CAS  Google Scholar 

  287. Mallat Z, Henry P, Fressonnet R, Alouani S, Scoazec A, Beaufils P, Chvatchko Y, Tedgui A (2002) Increased plasma concentrations of interleukin-18 in acute coronary syndromes. Heart 88(5):467–469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  288. Suchanek H, Myśliwska J, Siebert J, Wieckiewicz J, Hak Ł, Szyndler K, Kartanowicz D (2005) High serum interleukin-18 concentrations in patients with coronary artery disease and type 2 diabetes mellitus. Eur Cytokine Netw 16(3):177–185

    PubMed  CAS  Google Scholar 

  289. Blankenberg S, Luc G, Ducimetière P, Arveiler D, Ferrières J, Amouyel P, Evans A, Cambien F, Tiret L, PRIME Study Group (2003) Interleukin-18 and the risk of coronary heart disease in European men: the Prospective Epidemiological Study of Myocardial Infarction (PRIME). Circulation 108(20):2453–2459

    Article  PubMed  CAS  Google Scholar 

  290. Koenig W, Khuseyinova N, Baumert J, Thorand B, Loewel H, Chambless L, Meisinger C, Schneider A, Martin S, Kolb H, Herder C (2006) Increased concentrations of C-reactive protein and IL-6 but not IL-18 are independently associated with incident coronary events in middle-aged men and women: results from the MONICA/KORA Augsburg case-cohort study, 1984-2002. Arterioscler Thromb Vasc Biol 26(12):2745–2751

    Article  PubMed  CAS  Google Scholar 

  291. Jefferis BJ, Whincup PH, Welsh P, Wannamethee SG, Rumley A, Ebrahim S, Lawlor DA, Lowe GD (2013) Prospective study of IL-18 and risk of MI and stroke in men and women aged 60-79 years: a nested case-control study. Cytokine 61(2):513–520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  292. Opstad TB, Arnesen H, Pettersen AÅ, Seljeflot I (2016) Combined elevated levels of the proinflammatory cytokines IL-18 and IL-12 are associated with clinical events in patients with coronary artery disease: an observational study. Metab Syndr Relat Disord 14(5):242–248

    Article  PubMed  CAS  Google Scholar 

  293. Opstad TB, Pettersen AÅ, Arnesen H, Seljeflot I (2013) The co-existence of the IL-18+183 A/G and MMP-9 -1562 C/T polymorphisms is associated with clinical events in coronary artery disease patients. PLoS One 8(9):e74498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  294. Jadranko S, Tokmadzic VS, Danijel K, Igor M, Nada VD, Sanja B, Marijana R, Ana LB, Gordana L (2017) Endothelial dysfunction mediated by interleukin-18 in patients with ischemic heart disease undergoing coronary artery bypass grafting surgery. Med Hypotheses 104:20–24

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences (VEGA no. 2/0061/16). The support for the infrastructure for this project was provided by the St. Boniface Hospital Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naranjan S Dhalla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartekova, M., Radosinska, J., Jelemensky, M. et al. Role of cytokines and inflammation in heart function during health and disease. Heart Fail Rev 23, 733–758 (2018). https://doi.org/10.1007/s10741-018-9716-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-018-9716-x

Keywords

Navigation