Skip to main content

Advertisement

Log in

Boron in plants: uptake, deficiency and biological potential

  • Review Article
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Industrialization and ever-augmenting urbanization are directly linked to elevation of metalloid stressors in the environment. Human activities induced disruption of the natural ecosystem, up-regulated lead to build-up and deposition of metal and metalloid cues, is considered a dilemma of paramount significance and cause nutritional and environmental pollution apprehensions. Boron (B) is an indispensable metalloid, having transitional characteristics amid metals and non-metals. B is imperative for plants and its bioavailability in the water and soil medium it’s grown in, are significant for determination of crop growth and productivity. It participates in regulating structural and membrane integrity of the cell wall and plasma membrane, mobility of ions through the membrane, cell division and elongation, reproductive growth, synthesis of biomolecules viz. carbohydrates and proteins, metabolism of phenols and auxins, nitrogen fixation, disease resistance and abiotic stress management. B has an exceedingly narrow range between its deficiency and toxicity in cultivable plants. This review critically elucidates and updates our knowledge regarding: (i) mechanistic of B uptake in plants and its translocation under sufficient and limiteing conditions, and (ii) various strategies to augment B influx in plants which include root traits modification, grafting, employment of biostimulants and nanotechnology. Additionally, we discussed several engrossing aspects related to biological potential of B in plants and mechanism underlying elevation in endurance of plants to B deficit conditions and it’s signaling in plants, which contributes to better understanding of B accumulation and its role in plants. Wide array of documentation on interspecies genetic variability related to B efficiency and tolerance to its toxic levels along with information on physiological and genetic alteration attributes to B will result in development of novel varieties of plants tolerant to B and represents as a sustainable and significant solution to the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Ahmad W, Niaz A, Kanwal S, Rasheed M (2009) Role of boron in plant growth: A review. J Agricultural Res 47:329–338

    Google Scholar 

  • Ahmed N, Abid M, Ahmad F, Ullah MA, Javaid Q, Ali MA (2011) Impact of boron fertilization on dry matter production and mineral constitution of irrigated cotton. Pak J Bot 43:2903–2910

    Google Scholar 

  • Al-Amery M, Hamza J, Fuller M (2011) Effect of boron foliar application on reproductive growth of sunflower (Helianthus annuus L.). International Journal of Agronomy 2011

  • Archana NP, Verma P (2017) Boron deficiency and toxicity and their tolerance in plants: a review. J Global Biosci 6:4958–4965

    Google Scholar 

  • Arunkumar B, Thippeshappa G, Anjali M, Prashanth K (2018) Boron: A critical micronutrient for crop growth and productivity. J Pharmacognosy Phytochemistry 7:2738–2741

    CAS  Google Scholar 

  • Battacharyya D, Babgohari MZ, Rathor P, Prithiviraj B (2015) Seaweed extracts as biostimulants in horticulture. Sci Hort 196:39–48

    Article  CAS  Google Scholar 

  • Basu S, Prabhakar AA, Kumari S, Kumar RR, Shekhar S, Prakash K, Singh JP, Singh GP, Prasad R, Kumar G (2022) Micronutrient and redox homeostasis contribute to Moringa oleifera-regulated drought tolerance in wheat. Plant Growth Regul 18:1–2

    CAS  Google Scholar 

  • Beato VM et al (2011) Expression of root glutamate dehydrogenase genes in tobacco plants subjected to boron deprivation. Plant Physiol Biochem 49:1350–1354

    Article  CAS  PubMed  Google Scholar 

  • Beato VM, Rexach J, Navarro-Gochicoa MT, Camacho-Cristóbal JJ, Herrera-Rodríguez MB, González-Fontes A (2014) Boron deficiency increases expressions of asparagine synthetase, glutamate dehydrogenase and glutamine synthetase genes in tobacco roots irrespective of the nitrogen source. Soil Sci Plant Nutr 60:314–324

    Article  CAS  Google Scholar 

  • Bellaloui N, Mengistu A (2015) Effects of boron nutrition and water stress on nitrogen fixation, seed δ15N and δ13C dynamics, and seed composition in soybean cultivars differing in maturities. The Scientific World Journal 2015

  • Bellaloui N, Mengistu A, Kassem MA, Abel CA, Zobiole L(2014) Role of boron nutrient in nodules growth and nitrogen fixation in soybean genotypes under water stress conditions. Advances in Biology and Ecology of Nitrogen Fixation:237

  • Bienert MD, Bienert GP (2017) Plant aquaporins and metalloids. Plant aquaporins. Springer, pp 297–332

  • Bogiani JC, Amaro ACE, Rosolem CA (2013) Carbohydrate production and transport in cotton cultivars grown under boron deficiency. Scientia agrícola 70:442–448

    Article  CAS  Google Scholar 

  • Bolaños L, Redondo-Nieto M, Rivilla R, Brewin NJ, Bonilla I (2004) Cell surface interactions of Rhizobium bacteroids and other bacterial strains with symbiosomal and peribacteroid membrane components from pea nodules. Mol Plant-Microbe Interact 17:216–223

    Article  PubMed  Google Scholar 

  • Brown P, Saa S (2015) Biostimulants in agriculture. Front Plant Sci 6:671

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown PH et al (2002) Boron in plant biology. Plant Biol 4:205–223

    Article  CAS  Google Scholar 

  • Camacho-Cristóbal JJ, Anzellotti D, González-Fontes A (2002) Changes in phenolic metabolism of tobacco plants during short-term boron deficiency. Plant Physiol Biochem 40:997–1002

    Article  Google Scholar 

  • Camacho-Cristóbal JJ, González-Fontes A (2007) Boron deficiency decreases plasmalemma H+-ATPase expression and nitrate uptake, and promotes ammonium assimilation into asparagine in tobacco roots. Planta 226:443–451

    Article  PubMed  Google Scholar 

  • Camacho-Cristóbal JJ, Lunar L, Lafont F, Baumert A, González-Fontes A (2004) Boron deficiency causes accumulation of chlorogenic acid and caffeoyl polyamine conjugates in tobacco leaves. J Plant Physiol 161:879–881

    Article  PubMed  Google Scholar 

  • Camacho-Cristóbal JJ, Martín-Rejano EM, Herrera-Rodríguez MB, Navarro-Gochicoa MT, Rexach J, González-Fontes A (2015) Boron deficiency inhibits root cell elongation via an ethylene/auxin/ROS-dependent pathway in Arabidopsis seedlings. J Exp Bot 66:3831–3840

    Article  PubMed  PubMed Central  Google Scholar 

  • Camacho-Cristóbal JJ, Navarro-Gochicoa MT, Rexach J, González-Fontes A, Herrera-Rodríguez MB (2018) Plant response to boron deficiency and boron use efficiency in crop plants. Plant micronutrient use efficiency. Elsevier, pp 109–121

  • Camacho-Cristóbal JJ, Rexach J, Herrera-Rodríguez MB, Navarro-Gochicoa MT, González-Fontes A (2011) Boron deficiency and transcript level changes. Plant Sci 181:85–89

    Article  PubMed  Google Scholar 

  • Camacho-Cristóbal JJ, Rexach J, González‐Fontes A (2008) Boron in plants: deficiency and toxicity. J Integr Plant Biol 50:1247–1255

    Article  PubMed  Google Scholar 

  • Cara FA, Sánchez E, Ruiz JM, Romero L (2002) Is phenol oxidation responsible for the short-term effects of boron deficiency on plasma-membrane permeability and function in squash roots? Plant Physiol Biochem 40:853–858

    Article  CAS  Google Scholar 

  • Chen H, Zhang Q, He M, Wang S, Shi L, Xu F (2018) Molecular characterization of the genome-wide BOR transporter gene family and genetic analysis of BnaC04. BOR1; 1c inBrassica napus. BMC Plant Biol 18:1–14

  • Corrales I, Poschenrieder C, Barceló J (2008) Boron-induced amelioration of aluminium toxicity in a monocot and a dicot species. J Plant Physiol 165:504–513

    Article  CAS  PubMed  Google Scholar 

  • Coudray N et al (2017) Structure of the SLC4 transporter Bor1p in an inward-facing conformation. Protein Sci 26:130–145

    Article  CAS  PubMed  Google Scholar 

  • Dannel F, Pfeffer H, Römheld V (2002) Update on boron in higher plants-uptake, primary translocation and compartmentation. Plant Biol 4:193–204

    Article  CAS  Google Scholar 

  • Davidson D, Gu FX (2012) Materials for sustained and controlled release of nutrients and molecules to support plant growth. J Agric Food Chem 60:870–876

    Article  CAS  PubMed  Google Scholar 

  • De Cnodder T, Vissenberg K, Van Der Straeten D, Verbelen JP (2005) Regulation of cell length in the Arabidopsis thaliana root by the ethylene precursor 1-aminocyclopropane‐1‐carboxylic acid: a matter of apoplastic reactions. New Phytol 168:541–550

    Article  PubMed  Google Scholar 

  • de Oliveira RH, Dias Milanez CR, Moraes-Dallaqua MA, Rosolem CA (2006) Boron deficiency inhibits petiole and peduncle cell development and reduces growth of cotton. J Plant Nutr 29:2035–2048

    Article  Google Scholar 

  • Delmas F, Séveno M, Northey JG, Hernould M, Lerouge P, McCourt P, Chevalier C (2008) The synthesis of the rhamnogalacturonan II component 3-deoxy-D-manno-2-octulosonic acid (Kdo) is required for pollen tube growth and elongation. J Exp Bot 59:2639–2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dordas C (2006) Foliar boron application affects lint and seed yield and improves seed quality of cotton grown on calcareous soils. Nutr Cycl Agrosyst 76:19–28

    Article  CAS  Google Scholar 

  • Durbak AR et al (2014) Transport of boron by the tassel-less1 aquaporin is critical for vegetative and reproductive development in maize. Plant Cell 26:2978–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggert K, von Wirén N (2017) Response of the plant hormone network to boron deficiency. New Phytol 216:868–881

    Article  CAS  PubMed  Google Scholar 

  • Ehsan-Ul-Haq M, Kausar R, Akram M, Shahzad SM (2009) Is boron required to improve rice growth and yield in saline environment. Pak J Bot 41:1339–1350

    Google Scholar 

  • Eraslan F, Inal A, Gunes A, Alpaslan M (2007) Boron toxicity alters nitrate reductase activity, proline accumulation, membrane permeability, and mineral constituents of tomato and pepper plants. J Plant Nutr 30:981–994

    Article  CAS  Google Scholar 

  • Fakir O, Rahman M, Jahiruddin M(2016) Effects of foliar application of boron (B) on the grain set and yield of wheat (Triticum aestivum L.).Journal of Experimental Agriculture International:1–8

  • Fang K, Du B, Zhang Q, Xing Y, Cao Q, Qin L (2019) Boron deficiency alters cytosolic Ca2 + concentration and affects the cell wall components of pollen tubes in Malus domestica. Plant Biol 21:343–351

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Atique-ur-Rehman Aziz T, Habib M (2011) Boron nutripriming improves the germination and early seedling growth of rice (Oryza sativa L.). J Plant Nutr 34(10):1507–1515

    Article  CAS  Google Scholar 

  • Fazio G, Kviklys D, Grusak MA, Robinson T (2013) Phenotypic diversity and QTL mapping of absorption and translocation of nutrients by apple rootstocks. Asp Appl Biol 119:37–50

    Google Scholar 

  • Feng Y et al (2020) Transcription factor BnaA9. WRKY47 contributes to the adaptation of Brassica napus to low boron stress by up-regulating the boric acid channel gene BnaA3. NIP5; 1. Plant Biotechnol J 18:1241–1254

    Article  CAS  PubMed  Google Scholar 

  • Firat KU, Aydin A (2020) An in-silico study: interaction of BOR1-type boron (B) transporters with a small group of functionally unidentified proteins under various stresses in potato (Solanum tuberosum). Commagene J Biol 4(2):134–139

  • Funakawa H, Miwa K (2015) Synthesis of borate cross-linked rhamnogalacturonan II. Front Plant Sci 6:223

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  CAS  PubMed  Google Scholar 

  • González-Fontes A, Herrera-Rodríguez M, Martín-Rejano EM, Navarro-Gochicoa M, Rexach J, Camacho-Cristóbal JJ (2016) Root responses to boron deficiency mediated by ethylene. Front Plant Sci 6:1103

    Article  PubMed  PubMed Central  Google Scholar 

  • González-Fontes A, Navarro-Gochicoa MT, Camacho-Cristóbal JJ, Herrera-Rodríguez MB, Quiles-Pando C, Rexach J (2014) Is Ca2 + involved in the signal transduction pathway of boron deficiency? New hypotheses for sensing boron deprivation. Plant Sci 217:135–139

    Article  PubMed  Google Scholar 

  • Gu J et al (2019) Differential Alternative Splicing Genes in Response to Boron Deficiency in Brassica napus. Genes 10:224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajiboland R, Bahrami-Rad S, Bastani S (2013) Phenolics metabolism in boron-deficient tea [Camellia sinensis (L.) O. Kuntze] plants. Acta Biol Hung 64:196–206

    Article  CAS  PubMed  Google Scholar 

  • Halpern M, Bar-Tal A, Ofek M, Minz D, Muller T, Yermiyahu U (2015) The use of biostimulants for enhancing nutrient uptake. Adv Agron 130:141–174

    Article  Google Scholar 

  • Hanaoka H, Uraguchi S, Takano J, Tanaka M, Fujiwara T (2014) O s NIP 3; 1, a rice boric acid channel, regulates boron distribution and is essential for growth under boron-deficient conditions. Plant J 78:890–902

    Article  CAS  PubMed  Google Scholar 

  • Hegazi E, El-Motaium R, Yehia T, Hashim M (2018) Effect of foliar boron application on boron, chlorophyll, phenol, sugars and hormones concentration of olive (Olea europaea L.) buds, leaves, and fruits. J Plant Nutr 41:749–765

    Article  CAS  Google Scholar 

  • Huang Y et al (2016) Improving magnesium uptake, photosynthesis and antioxidant enzyme activities of watermelon by grafting onto pumpkin rootstock under low magnesium. Plant Soil 409:229–246

    Article  CAS  Google Scholar 

  • Isayenkov SV, Maathuis FJ (2008) The Arabidopsis thaliana aquaglyceroporin At NIP7; 1 is a pathway for arsenite uptake. FEBS Lett 582:1625–1628

    Article  CAS  PubMed  Google Scholar 

  • Ismaiel HM, Aboel-Ainin MA (2021) Role of Boron-Nanoparticles to Improve Fruiting Properties, Chemical Constituents and Accumulation of Bioactive Compounds of Citrus sinensis L. Trees. Int Res J Innov Eng Technol 5(1):12

    Google Scholar 

  • Iwai H, Hokura A, Oishi M, Chida H, Ishii T, Sakai S, Satoh S (2006) The gene responsible for borate cross-linking of pectin Rhamnogalacturonan-II is required for plant reproductive tissue development and fertilization. Proceedings of the National Academy of Sciences 103:16592–16597

  • Jehangir IA, Wani SH, Bhat MA, Hussain A, Raja W, Haribhushan A (2017) Micronutrients for crop production: role of boron. Int J Curr Microbiol Appl Sci 6:5347–5353

    Article  Google Scholar 

  • Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51

    Article  CAS  PubMed  Google Scholar 

  • Kauffman GL, Kneivel DP, Watschke TL (2007) Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability, and polyphenol production of perennial ryegrass. Crop Sci 47:261–267

    Article  CAS  Google Scholar 

  • Khuong NQ, Tran NT, Huu TN, Sakagami JI (2022) Foliar application of boron positively affects the growth, yield, and oil content of sesame (Sesamum indicum L.). Open Agric 7(1):30-38Kobayashi M (2018) Mechanism underlying rapid responses to boron deprivation in Arabidopsis roots. Soil Sci Plant Nutr 64:106–115

  • Kobayashi M, Mutoh T, Matoh T (2004) Boron nutrition of cultured tobacco BY-2 cells. IV. Genes induced under low boron supply. J Exp Bot 55:1441–1443

    Article  CAS  PubMed  Google Scholar 

  • Koshiba T, Kobayashi M, Ishihara A, Matoh T (2010) Boron nutrition of cultured tobacco BY-2 cells. VI. Calcium is involved in early responses to boron deprivation. Plant Cell Physiol 51:323–327. https://doi.org/10.1093/pcp/pcp179

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Basu S, Kumar G (2021) Evaluating the effect of seed- priming for improving arsenic tolerance in rice. J Plant Biochem Biotechnol 31:197–201

    Article  Google Scholar 

  • Larbi A, Gargouri K, Ayadi M, Dhiab AB, Msallem M (2011) Effect of foliar boron application on growth, reproduction, and oil quality of olive trees conducted under a high density planting system. J Plant Nutr 34:2083–2094

    Article  CAS  Google Scholar 

  • Leonard A et al (2014) tassel-less1 encodes a boron channel protein required for inflorescence development in maize. Plant Cell Physiol 55:1044–1054

    Article  CAS  PubMed  Google Scholar 

  • Lewis DH (2019) Boron: the essential element for vascular plants that never was. New Phytol 221:1685–1690

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Liu Y, Pan Z, Xie S, Peng S-a (2016) Boron deficiency alters root growth and development and interacts with auxin metabolism by influencing the expression of auxin synthesis and transport genes. Biotechnol Biotechnol Equip 30:661–668

    Article  CAS  Google Scholar 

  • Liakopoulos G, Karabourniotis G (2005) Boron deficiency and concentrations and composition of phenolic compounds in Olea europaea leaves: a combined growth chamber and field study. Tree Physiol 25:307–315

    Article  CAS  PubMed  Google Scholar 

  • Liu G-D, Wang R-D, Wu L-S, Peng S-A, Wang Y-H, Jiang C-C (2012) Boron distribution and mobility in navel orange grafted on citrange and trifoliate orange. Plant Soil 360:123–133

    Article  CAS  Google Scholar 

  • Lordkaew S, Konsaeng S, Jongjaidee J, Dell B, Rerkasem B, Jamjod S (2013) Variation in responses to boron in rice. Plant Soil 363:287–295

    Article  CAS  Google Scholar 

  • Lu Y-B, Yang L-T, Li Y, Xu J, Liao T-T, Chen Y-B, Chen L-S (2014) Effects of boron deficiency on major metabolites, key enzymes and gas exchange in leaves and roots of Citrus sinensis seedlings. Tree Physiol 34:608–618

    Article  PubMed  Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Berkowitz GA (2011) Ca2+ conduction by plant cyclic nucleotide gated channels and associated signaling components in pathogen defense signal transduction cascades. New Phytol 190:566–572

    Article  CAS  PubMed  Google Scholar 

  • Marschner P, Rengel Z (2012) Nutrient availability in soils. In: Marschner H (ed) Marschner’s mineral nutrition of higher plants. Academic press, pp 315–330

  • Martín-Rejano EM, Camacho‐Cristóbal JJ, Herrera‐Rodríguez MB, Rexach J, Navarro‐Gochicoa MT, González‐Fontes A (2011) Auxin and ethylene are involved in the responses of root system architecture to low boron supply in Arabidopsis seedlings. Physiol Plant 142:170–178

    Article  PubMed  Google Scholar 

  • Martínez-Ballesta MC, Alcaraz-López C, Muries B, Mota-Cadenas C, Carvajal M (2010) Physiological aspects of rootstock–scion interactions. Sci Hort 127:112–118

    Article  Google Scholar 

  • Matthes MS, Robil JM, McSteen P (2020) From element to development: the power of the essential micronutrient boron to shape morphological processes in plants. J Exp Bot 71(5):1681–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mei L, Sheng O, Peng S-a, Zhou G-f, Wei Q-j, Li Q-h (2011) Growth, root morphology and boron uptake by citrus rootstock seedlings differing in boron-deficiency responses. Sci Hort 129:426–432

    Article  CAS  Google Scholar 

  • Miwa K, Fujiwara T (2010) Boron transport in plants: co-ordinated regulation of transporters. Ann Bot 105:1103–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mookherjee S, Mitra B (2016) Role of Sulphur, Boron and Zinc Nutrition in Field Crops and Their Status in Eastern Sub- Himalayan Plains of India. Imperial J interdisciplinary Res 2:1180–1184

    Google Scholar 

  • Naeem M et al (2018) Improving drought tolerance in maize by foliar application of boron: water status, antioxidative defense and photosynthetic capacity. Arch Agron Soil Sci 64:626–639

    Article  CAS  Google Scholar 

  • Nagarajan Y et al (2016) A barley efflux transporter operates in a Na+-dependent manner, as revealed by a multidisciplinary platform. Plant Cell 28:202–218

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa Y, Hanaoka H, Kobayashi M, Miyoshi K, Miwa K, Fujiwara T (2007) Cell-type specificity of the expression of Os BOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading.The Plant Cell 19:2624–2635

  • Neumann G, Martinoia E (2002) Cluster roots–an underground adaptation for survival in extreme environments. Trends Plant Sci 7:162–167

    Article  CAS  PubMed  Google Scholar 

  • Quiles-Pando C, Rexach J, Navarro-Gochicoa MT, Camacho-Cristóbal JJ, Herrera-Rodríguez MB, González-Fontes A (2013) Boron deficiency increases the levels of cytosolic Ca2+ and expression of Ca2+-related genes in Arabidopsis thaliana roots. Plant Physiol Biochem 65:55–60

    Article  CAS  PubMed  Google Scholar 

  • Redondo-Nieto M, Rivilla R, El-Hamdaoui A, Bonilla I, Bolaños L (2001) Research Note: Boron deficiency affects early infection events in the pea-Rhizobium symbiotic interaction. Funct Plant Biol 28:819–823

    Article  Google Scholar 

  • Redondo-Nieto M, Wilmot A, El‐Hamdaoui A, Bonilla I, Bolaños L (2003) Relationship between boron and calcium in the N2‐fixing legume–rhizobia symbiosis. Plant Cell Environ 26:1905–1915

    Article  CAS  Google Scholar 

  • Roberts DM, Routray P (2017) The nodulin 26 intrinsic protein subfamily. Plant Aquaporins. Springer, pp 267–296

  • Rosolem CA, Leite VM (2007) Coffee leaf and stem anatomy under boron deficiency. Revista Brasileira de Ciência do Solo 31:477–483

    Article  CAS  Google Scholar 

  • Ruiz J, Rivero R, Romero L (2006) Boron increases synthesis of glutathione in sunflower plants subjected to aluminum stress. Plant Soil 279:25–30

    Article  CAS  Google Scholar 

  • Ryden P, Sugimoto-Shirasu K, Smith AC, Findlay K, Reiter W-D, McCann MC (2003) Tensile properties of Arabidopsis cell walls depend on both a xyloglucan cross-linked microfibrillar network and rhamnogalacturonan II-borate complexes. Plant Physiol 132:1033–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto T, Sotta N, Suzuki T, Fujiwara T, Matsunaga S (2019) The 26S proteasome is required for the maintenance of root apical meristem by modulating auxin and cytokinin responses under high-boron stress. Front Plant Sci 10:590

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma HS, Fleming C, Selby C, Rao J, Martin T (2014) Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J Appl Phycol 26:465–490

    Article  CAS  Google Scholar 

  • Shehzad MA, Maqsood M, Nawaz F, Abbas T, Yasin S (2018) Boron-induced improvement in physiological, biochemical and growth attributes in sunflower (Helianthus annuus L.) exposed to terminal drought stress. J Plant Nutr 41:943–955

    Article  CAS  Google Scholar 

  • Shireen F et al (2018) Boron: functions and approaches to enhance its availability in plants for sustainable agriculture. Int J Mol Sci 19:1856

    Article  PubMed  PubMed Central  Google Scholar 

  • Sotta N, Bian B, Peng D, Hongkham P, Kamiya T, Niikura S, Fujiwara T (2019) Local boron concentrations in tuberous roots of Japanese radish (Raphanus sativus L.) negatively correlate with distribution of brown heart. Plant Physiol Biochem 136:58–66

    Article  CAS  PubMed  Google Scholar 

  • Stangoulis JC, Reid RJ, Brown PH, Graham RD (2001) Kinetic analysis of boron transport in Chara. Planta 213:142–146

    Article  CAS  PubMed  Google Scholar 

  • Takada S, Miwa K, Omori H, Fujiwara T, Naito S, Takano J (2014) Improved tolerance to boron deficiency by enhanced expression of the boron transporter BOR2. Soil Sci Plant Nutr 60:341–348

  • Takano J, Miwa K, Fujiwara T (2008) Boron transport mechanisms: collaboration of channels and transporters. Trends Plant Sci 13:451–457

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Miwa K, Yuan L, von Wirén N, Fujiwara T (2005) Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. Proceedings of the National Academy of Sciences 102:12276–12281

  • Takano J et al (2002) Arabidopsis boron transporter for xylem loading. Nature 420:337–340

    Article  CAS  PubMed  Google Scholar 

  • Takano J et al (2010) Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways. Proceedings of the National Academy of Sciences 107:5220–5225

  • Takano J, Wada M, Ludewig U, Schaaf G, Von Wirén N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5; 1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Fujiwara T (2008) Physiological roles and transport mechanisms of boron: perspectives from plants. Pflügers Archiv-European Journal of Physiology 456:671–677

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Wallace IS, Takano J, Roberts DM, Fujiwara T (2008) NIP6; 1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. Plant Cell 20:2860–2875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tariq M, Mott C (2007) The significance of boron in plant nutrition and environment-a review. J Agron 6:1

    CAS  Google Scholar 

  • Tavallali V, Karimi S, Espargham O (2018) Boron enhances antioxidative defense in the leaves of salt-affected Pistacia vera seedlings. Hortic J 87:55–62

    Article  Google Scholar 

  • Uluisik I, Karakaya HC, Koc A (2018) The importance of boron in biological systems. J Trace Elem Med Biol 45:156–162

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Ma F, Cheng L (2010) Metabolism of organic acids, nitrogen and amino acids in chlorotic leaves of ‘Honeycrisp’apple (Malus domestica Borkh) with excessive accumulation of carbohydrates. Planta 232:511–522

    Article  CAS  PubMed  Google Scholar 

  • Wimmer MA et al (2019) Boron: an essential element for vascular plants. New Phytol 226:1232–1237

    Article  PubMed  Google Scholar 

  • Wimmer MA, Eichert T (2013) Mechanisms for boron deficiency-mediated changes in plant water relations. Plant Sci 203:25–32

    Article  PubMed  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2:e718

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu H, Shabala L, Shabala S, Giraldo JP (2018) Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention. Environ Science: Nano 5:1567–1583

    CAS  Google Scholar 

  • Wu X, Song H, Guan C, Zhang Z (2020) Boron mitigates cadmium toxicity to rapeseed (Brassica napus) shoots by relieving oxidative stress and enhancing cadmium chelation onto cell walls. Environ Pollut 263:114546

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Riaz M, Wu X, Du C, Liu Y, Jiang C (2018) Ameliorative effects of boron on aluminum induced variations of cell wall cellulose and pectin components in trifoliate orange (Poncirus trifoliate (L.) Raf.) rootstock. Environ Pollut 240:764–774

    Article  CAS  PubMed  Google Scholar 

  • Yoshinari A, Fujimoto M, Ueda T, Inada N, Naito S, Takano J (2016) DRP1-dependent endocytosis is essential for polar localization and boron-induced degradation of the borate transporter BOR1 in Arabidopsis thaliana. Plant and Cell Physiology 57:1985–2000

  • Yoshinari A, Takano J (2017) Insights into the mechanisms underlying boron homeostasis in plants. Front Plant Sci 8:1951

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Q, Hlavacka A, Matoh T, Volkmann D, Menzel D, Goldbach HE, Baluška F (2002) Short-term boron deprivation inhibits endocytosis of cell wall pectins in meristematic cells of maize and wheat root apices. Plant Physiol 130:415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q et al. (2017) The boron transporter BnaC4. BOR1; 1c is critical for inflorescence development and fertility under boron limitation in Brassica napus. Plant, Cell Environ 40:1819–1833

  • Zhou G-F, Liu Y-Z, Sheng O, Wei Q-J, Yang C-Q, Peng S-A (2015) Transcription profiles of boron-deficiency-responsive genes in citrus rootstock root by suppression subtractive hybridization and cDNA microarray. Front Plant Sci 5:795

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou GF, Peng SA, Liu YZ, Wei QJ, Han J, Islam MZ (2014) The physiological and nutritional responses of seven different citrus rootstock seedlings to boron deficiency. Trees 28:295–307

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design of the review. Data collection and analysis, figures and illustration were performed by Harsimran Kaur, Kanika Khanna, Neha Handa, Renu Bhardwaj. The first draft of the manuscript was written by Sukhmeen Kaur Kohli, Jörg Rinklebe and Parvaiz Ahmad and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Parvaiz Ahmad.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Marian Brestic.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohli, S.K., Kaur, H., Khanna, K. et al. Boron in plants: uptake, deficiency and biological potential. Plant Growth Regul 100, 267–282 (2023). https://doi.org/10.1007/s10725-022-00844-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-022-00844-7

Keywords

Navigation