Skip to main content
Log in

Combined gene family characterization and RNA-Seq to study the response of β-ketoacyl-CoA synthase to abiotic stress in rice (Oryza sativa L.)

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

β-ketoacyl-CoA synthase is a key enzyme in the biosynthesis of over-long-chain fattty acids; thus, it plays a crucial role in plant resistance to stress. Herein, 33 OsKCSs were classified into five subfamilies based on phylogenetic analysis and domain structure in rice. Nonsynonymous to synonymous substitution ratio (Ka/Ks) analysis showed that duplicated genes were possibly under strong purifying selection pressure. Cis-element analysis revealed that OsKCSs may be regulated by different transcription factors. SNP distribution of OsKCSs in 295 germplasm accessions seemed associated with functional disparity under environmental stress. Additionally, 10 of the 33 OsKCSs were not expressed in different rice tissues. RNA-Seq and qRT-PCR analysis demonstrated that seven OsKCSs (OsKCS5, OsKCS6, OsKCS14, OsKCS15, OsKCS4, OsKCS30, and OsKCS21) had significantly different expression levels under 0.5% NaCl, 0.5% Na2CO3, and a 10-day incubation at 17 °C. Our results provide a solid foundation for understanding the roles of OsKCS genes and the mechanism by which they regulate stress resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537(7620):347–355

    Article  CAS  PubMed  Google Scholar 

  • Avashthi H, Pathak RK, Gaur VS, Singh S, Gupta VK, Ramteke PW, Kumar A (2020) Comparative analysis of ROS-scavenging gene families in finger millet, rice, sorghum, and foxtail millet revealed potential targets for antioxidant activity and drought tolerance improvement. NetMAHIB 9(1):33

    Google Scholar 

  • Avila LM, Obeidat W, Earl H, Niu X, Hargreaves W, Lukens L (2018) Shared and genetically distinct Zea mays transcriptome responses to ongoing and past low temperature exposure. BMC Genom 19(1):761

    Article  CAS  Google Scholar 

  • Bai B, Lu N, Li Y, Guo S, Yin H, He Y, Sun W, Li W, Xie X (2019) OsBBX14 promotes photomorphogenesis in rice by activating OsHY5L1 expression under blue light conditions. Plant Sci 284:192–202

    Article  CAS  PubMed  Google Scholar 

  • Bourdenx B, Bernard A, Domergue F, Pascal S, Léger A, Roby D, Pervent M, Vile D, Haslam RP, Napier JA, Lessire R, Joubès J (2011) Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol 156(1):29–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Zhang Z, Ni E, Lin J, Peng G, Huang J, Zhu L, Deng L, Yang F, Luo Q (2020) HMS1 interacts with HMS1I to regulate very-long-chain fatty acid biosynthesis and the humidity-sensitive genic male sterility in rice (Oryza sativa). New Phytol 225(5):2077

    Article  CAS  PubMed  Google Scholar 

  • Cwiklinski K, Dalton JP, Dufresne PJ, La Course J, Williams DJ, Hodgkinson J, Paterson S (2015) The Fasciola hepatica genome: gene duplication and polymorphism reveals adaptation to the host environment and the capacity for rapid evolution. Genome Biol 16(1):71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dametto A, Sperotto RA, Adamski JM, Blasi ÉA, Cargnelutti D, de Oliveira LF, Ricachenevsky FK, Fregonezi JN, Mariath JE, da Cruz RP (2015) Cold tolerance in rice germinating seeds revealed by deep RNAseq analysis of contrasting indica genotypes. Plant Sci 238:1–12

    Article  CAS  PubMed  Google Scholar 

  • De Silva W, Perera M, Perera K, Wickramasuriya A, Jayasekera G (2017) In silico analysis of osr40c1 promoter sequence isolated from Indica variety Pokkali. Rice Sci 24(4):228–234

    Article  Google Scholar 

  • Du H, Wu N, Chang Y, Li X, Xiao J, Xiong L (2013) Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice. Plant Mol Biol 83(4–5):475–488

    Article  CAS  PubMed  Google Scholar 

  • El Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47(D1):D427–D432

    Article  PubMed  CAS  Google Scholar 

  • Fiebig A, Mayfield JA, Miley NL, Chau S, Fischer RL, Preuss D (2000) Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell 12(10):2001–2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn R, Mistry J, Tate J, Coggill P, Heger A (2014) Pfam: the protein families database. Nucleic Acids Res 42(D1):D222–D230

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Wu H, Ma S, Xiang D, Liu R, Xiong L (2017) OsJAZ1 attenuates drought resistance by regulating JA and ABA signaling in rice. Front Plant Sci 8:2108

    Article  PubMed  PubMed Central  Google Scholar 

  • Gan L, Wang X, Cheng Z, Liu L, Wang J, Zhang Z, Ren Y, Lei C, Zhao Z, Zhu S, Lin Q, Wu F, Guo X, Wang J, Zhang X, Wan J (2016) Wax crystal-sparse leaf 3 encoding a β-ketoacyl-CoA reductase is involved in cuticular wax biosynthesis in rice. Plant Cell Rep 35(8):1687–1698

    Article  CAS  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40(D1):D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Gu Z, Cavalcanti A, Chen F-C, Bouman P, Li W-H (2002) Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Mol Biol Evol 19(3):256–262

    Article  CAS  PubMed  Google Scholar 

  • Guan S, Xu Q, Ma D, Zhang W, Xu Z, Zhao M, Guo Z (2019) Transcriptomics profiling in response to cold stress in cultivated rice and weedy rice. Gene 685:96–105

    Article  CAS  PubMed  Google Scholar 

  • Gururani K, Kumar A, Tiwari A, Agarwal A, Gupta S, Pandey D (2020) Transcriptome wide identification and characterization of regulatory genes involved in EAA metabolism and validation through expression analysis in different developmental stages of finger millet spikes. 3 Biotech 10(8):1–15

    Article  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27(D1):D297–D300

    Article  Google Scholar 

  • Huai D, Xue X, Li Y, Wang P, Li J, Yan L, Chen Y, Wang X, Liu N, Kang Y (2020) Genome-wide identification of peanut KCS genes reveals that AhKCS1 and AhKCS28 are involved in regulating VLCFA contents in seeds. Front Plant Sci 11:406

    Article  PubMed  PubMed Central  Google Scholar 

  • Islam MA, Du H, Ning J, Ye H, Xiong L (2009) Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant Mol Biol 70(4):443–456

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Kimura F, Hirakata K, Tsuda K, Takasugi T, Eiguchi M, Nakagawa K, Kurata N (2011) Fatty acid elongase is required for shoot development in rice. Plant J 66(4):680–688

    Article  CAS  PubMed  Google Scholar 

  • Jin Z, Xu W, Liu A (2014) Genomic surveys and expression analysis of bZIP gene family in castor bean (Ricinus communis L.). Planta 239(2):299–312

    Article  CAS  PubMed  Google Scholar 

  • Joubès J, Raffaele S, Bourdenx B, Garcia C, Laroche-Traineau J, Moreau P, Domergue F, Lessire R (2008) The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling. Plant Mol Biol 67(5):547

    Article  PubMed  CAS  Google Scholar 

  • Kersey PJ, Allen JE, Allot A, Barba M, Boddu S, Bolt BJ, Carvalho-Silva D, Christensen M, Davis P, Grabmueller C (2018) Ensembl genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Res 46(D1):D802–D808

    Article  CAS  PubMed  Google Scholar 

  • Kosma DK, Bourdenx B, Bernard A, Parsons EP, Lü S, Joubès J, Jenks MA (2009) The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol 151(4):1918–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotoka DK, Weiguo Z (2018) Molecular cloning and expression of 3-ketoacyl-CoA synthase (3KeCs) gene in mulberry (Morus alba L.) under abiotic stresses. Res J Biotechnol 13(2):1–7

    CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Gho Y-S, Jung K-H, Kim S-R (2017) Genome-wide identification and analysis of genes, conserved between japonica and indica rice cultivars, that respond to low-temperature stress at the vegetative growth stage. Front Plant Sci 8:1120

    Article  PubMed  PubMed Central  Google Scholar 

  • Laura B, Silvia P, Francesca F, Benedetta S, Carla C (2018) Epigenetic control of defense genes following MeJA-induced priming in rice (O. sativa). J Plant Physiol 228:166–177

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Suh MC (2013) Recent advances in cuticular wax biosynthesis and its regulation in Arabidopsis. Mol Plant 6(2):246–249

    Article  CAS  PubMed  Google Scholar 

  • Lee TH, Tang H, Wang X, Paterson AH (2012) PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res 41(D1):D1152–D1158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lei L, Zheng H, Bi Y, Yang L, Liu H, Wang J, Sun J, Zhao H, Li X, Li J (2020) Identification of a Major QTL and Candidate Gene Analysis of Salt Tolerance at the Bud Burst Stage in Rice (Oryza sativa L.) Using QTL-Seq and RNA-Seq. Rice 13(1):55

    Article  PubMed  PubMed Central  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Sun J, Wang J, Liu H, Zheng H, Yang L, Liang Y, Li X, Zou D (2017) QTL analysis for alkaline tolerance of rice and verification of a major QTL. Plant Breed 136(6):881–891

    Article  CAS  Google Scholar 

  • Li J, Zhang M, Sun J, Mao X, Wang J, Wang J, Liu H, Zheng H, Zhen Z, Zhao H (2019a) Genome-wide characterization and identification of trihelix transcription factor and expression profiling in response to abiotic stresses in rice (Oryza sativa L.). Int J Mol Sci 20(2):251

    Article  PubMed Central  CAS  Google Scholar 

  • Li N, Zheng HL, Cui JN, Wang JG, Liu HL, Sun J, Liu TT, Zhao HW, Lai YC, Zou DT (2019b) Genome-wide association study and candidate gene analysis of alkalinity tolerance in japonica rice germplasm at the seedling stage. Rice 12(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Zheng H, Wu W, Liu H, Wang J, Jia Y, Li J, Yang L, Lei L, Zou D, Zhao H (2020) QTL mapping and candidate gene analysis for alkali tolerance in Japonica rice at the bud stage based on linkage mapping and genome-wide association study. Rice 13(1):48

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao P, Huang J, Tong P, Nie W, Yan X, Feng Y, Peng H, Peng X, Li S (2017) Characterization and expression analysis of inositolphosphorylceramide synthase family genes in rice (Oryza sativa L.). Genes Genom 39(5):485–492

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mao B, Cheng Z, Lei C, Xu F, Gao S, Ren Y, Wang J, Zhang X, Wang J, Wu F (2012) Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax. Planta 235(1):39–52

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS, Gagen MJ (2001) The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. Mol Biol Evol 18(9):1611–1630

    Article  CAS  PubMed  Google Scholar 

  • Mills D, Zhang G, Benzioni A (2001) Effect of different salts and of ABA on growth and mineral uptake in jojoba shoots grown in vitro. J Plant Physiol 158(8):1031–1039

    Article  CAS  Google Scholar 

  • Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang H-Y, El-Gebali S, Fraser MI (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47(D1):D351–D360

    Article  CAS  PubMed  Google Scholar 

  • Nianiou-Obeidat I, Madesis P, Kissoudis C, Voulgari G, Chronopoulou E, Tsaftaris A, Labrou NE (2017) Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Rep 36(6):791–805

    Article  CAS  PubMed  Google Scholar 

  • Oliver SN, Dennis ES, Dolferus R (2007) ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant Cell Physiol 48(9):1319–1330

    Article  CAS  PubMed  Google Scholar 

  • Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123

    Article  PubMed  PubMed Central  Google Scholar 

  • Reimegard J, Kundu S, Pendle A, Irish VF, Shaw P, Nakayama N, Sundström JF, Emanuelsson O (2017) Genome-wide identification of physically clustered genes suggests chromatin-level co-regulation in male reproductive development in Arabidopsis thaliana. Nucleic Acids Res 45(D6):D3253–D3265

    Article  CAS  Google Scholar 

  • Restovic F, Espinoza-Corral R, Gómez I, Vicente-Carbajosa J, Jordana X (2017) An active mitochondrial complex II present in mature seeds contains an embryo-specific iron–sulfur subunit regulated by ABA and bZIP53 and is involved in germination and seedling establishment. Front Plant Sci 8:277

    Article  PubMed  PubMed Central  Google Scholar 

  • Riederer M (2006) Thermodynamics of the water permeability of plant cuticles: characterization of the polar pathway. J Exp Bot 57(12):2937–2942

    Article  CAS  PubMed  Google Scholar 

  • Rudolph S, Lunow D, Kaiser S, Henle T (2017) Identification and quantification of ACE-inhibiting peptides in enzymatic hydrolysates of plant proteins. Food Chem 224:19–25

    Article  CAS  PubMed  Google Scholar 

  • Sagar M, Pandey N, Qamar N, Singh B, Shukla A (2015) Domain analysis of 3 Keto Acyl-CoA synthase for structural variations in Vitis vinifera and Oryza brachyantha using comparative modelling. Interdip Sci 7(1):7–20

    Article  CAS  Google Scholar 

  • Saha D, Mukherjee P, Dutta S, Meena K, Sarkar SK, Mandal AB, Dasgupta T, Mitra J (2019) Genomic insights into HSFs as candidate genes for high-temperature stress adaptation and gene editing with minimal off-target effects in flax. Sci Rep 9(1):1–18

    Article  Google Scholar 

  • Sasaki T (2005) The map-based sequence of the rice genome. Nature 436(7052):793–800

    Article  CAS  Google Scholar 

  • Sassa T, Kihara A (2014) Metabolism of very long-chain fatty acids: genes and pathophysiology. Biomol Ther 22(2):83

    Article  CAS  Google Scholar 

  • Seo PJ, Lee SB, Suh MC, Park M-J, Go YS, Park C-M (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23(3):1138–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skolnick J, Fetrow JS (2000) From genes to protein structure and function: novel applications of computational approaches in the genomic era. Trends Biotechnol 18(1):34–39

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Yang L, Wang J, Liu H, Zheng H, Xie D, Zhang M, Feng M, Jia Y, Zhao H, Zou D (2018) Identification of a cold-tolerant locus in rice (Oryza sativa L.) using bulked segregant analysis with a next-generation sequencing strategy. Rice 11(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  • Tong T, Fang Y-X, Zhang Z, Zheng J, Zhang X, Li J, Niu C, Xue D, Zhang X (2021) Genome-wide identification and expression pattern analysis of the KCS gene family in barley. Plant Growth Regul 93(1):89–103

    Article  CAS  Google Scholar 

  • Usher S, Han L, Haslam RP, Michaelson LV, Sturtevant D, Aziz M, Chapman KD, Sayanova O, Napier JA (2017) Tailoring seed oil composition in the real world: optimising omega-3 long chain polyunsaturated fatty acid accumulation in transgenic Camelina sativa. Sci Rep 7(1):1–12

    Article  CAS  Google Scholar 

  • Wang X, Guan Y, Zhang D, Dong X, Tian L (2017) A β-ketoacyl-CoA synthase is involved in rice leaf cuticular wax synthesis and requires a CER2-LIKE protein as a cofactor. Plant Physiol 173(2):944–955

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Gao G, Cao S, Xie Q, Qi H (2019a) Isolation and functional validation of the CmLOX08 promoter associated with signalling molecule and abiotic stress responses in oriental melon, Cucumis melo var. makuwa Makino. BMC Plant Biol 19(1):75

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhang H, Shao L-Y, Yan X, Peng H, Ouyang J-X, Li S-B (2019b) Expression and function analysis of a rice OsHSP40 gene under salt stress. Genes Genom 41(2):175–182

    Article  CAS  Google Scholar 

  • Xiao GH, Wang K, Huang G, Zhu YX (2016) Genome-scale analysis of the cotton KCS gene family revealed a binary mode of action for gibberellin A regulated fiber growth. J Integra Plant Biol 58(6):577–589

    Article  CAS  Google Scholar 

  • Yamauchi T, Shiono K, Nagano M, Fukazawa A, Ando M, Takamure I, Mori H, Nishizawa NK, Kawai-Yamada M, Tsutsumi N (2015) Ethylene biosynthesis is promoted by very-long-chain fatty acids during lysigenous aerenchyma formation in rice roots. Plant Physiol 169(1):180–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang LM, Liu H, Zhao HW, Wang JG, Sun J, Zheng HL, Lei L, Zou DT (2019) Mapping quantitative trait loci and meta-analysis for cold tolerance in rice at booting stage. Euphytica 215(5):89

    Article  CAS  Google Scholar 

  • Yang L, Lei L, Liu H, Wang J, Zheng H, Zou D (2020) Whole-genome mining of abiotic stress gene loci in rice. Planta 252(5):85

    Article  CAS  PubMed  Google Scholar 

  • Ye W, Hu S, Wu L, Ge C, Cui Y, Chen P, Wang X, Xu J, Ren D, Dong G, Qian Q, Guo L (2016) White stripe leaf 12 (WSL12), encoding a nucleoside diphosphate kinase 2 (OsNDPK2), regulates chloroplast development and abiotic stress response in rice (Oryza sativa L.). Mol Breed 36(5):57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu D, Ranathunge K, Huang H, Pei Z, Franke R, Schreiber L, He C (2008) Wax Crystal-Sparse Leaf1 encodes a β–ketoacyl CoA synthase involved in biosynthesis of cuticular waxes on rice leaf. Planta 228(4):675–685

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Rowland O, Kunst L (2005) Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17(5):1467–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Yang X, Fu Y, Zhu L, Wei H, Lin X (2017) Overexpression of PvPin1, a bamboo homolog of PIN1-Type Parvulin 1, delays flowering time in transgenic Arabidopsis and rice. Front Plant Sci 8:1526

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Editage (www.editage.cn) for English language editing.

Funding

This research was financially supported by the Major Science and Technology Project of Heilongjiang Province, China (Grant No. 2020ZX16B010) and by the China Postdoctoral Science Foundation (Grant No. 2019M651249).

Author information

Authors and Affiliations

Authors

Contributions

Data curation, LL and HZ; Formal analysis, LY and WX; Funding acquisition, HL; Software, LL, and JW; Supervision, DZ; Writing—original draft, LL and LY; Writing—review and editing, BC and DZ.

Corresponding author

Correspondence to Detang Zou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Longbiao Guo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PNG 432 kb) Fig. S1. Motif sequences of KCS genes in rice

10725_2021_728_MOESM2_ESM.jpg

Supplementary material 2 (JPEG 229 kb) Fig. S2. Chromosomal location of OsKCS genes in rice. Blue bars represent the chromosomes. Chromosome numbers are shown at the top of the bar. OsKCS genes are labeled at the right of the chromosomes; Group I to Group V genes are marked with green, blue, orange, light blue, and yellow, respectively. The position of every OsKCS gene is labeled on the left of the chromosomes.

10725_2021_728_MOESM3_ESM.tif

Supplementary material 3 (TIFF 270 kb) Fig. S3. Expression patterns of rice OsKCS genes in various tissues. The expression level of OsKCS genes is shown by different colors on the right scale.

10725_2021_728_MOESM4_ESM.tif

Supplementary material 4 (TIFF 200 kb) Fig. S4. Expression patterns of rice OsKCS genes under various conditions of abiotic stress conditions. The expression levels of OsKCS genes are shown by different colors on the right scale. The color scale represents the log2(-FoldChange) value from high (red) to low (blue).

Supplementary material 5 (XLSX 341 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, L., Yang, L., Cui, B. et al. Combined gene family characterization and RNA-Seq to study the response of β-ketoacyl-CoA synthase to abiotic stress in rice (Oryza sativa L.). Plant Growth Regul 95, 97–110 (2021). https://doi.org/10.1007/s10725-021-00728-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-021-00728-2

Keywords

Navigation