Skip to main content
Log in

The integration of ACS2-generated ACC with GH3-mediated IAA homeostasis in NaCl-stressed primary root elongation of Arabidopsis seedlings

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Plant root growth is controlled by auxin (IAA) and ethylene. The appropriate IAA concentration is regulated by many events, such as IAA biosynthesis, conjugation, and degradation. The levels of ethylene and its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) depend on the activity of ACC synthases (ACSs). However, some questions have been raised: can ACS family members specifically regulate the ACC concentration in response to NaCl stress, and if so, how? How does ACC production affect IAA homeostasis during the root growth of Arabidopsis seedlings? Here, our observations showed that NaCl inhibition of root growth was greater in the ACS2-deficient mutants acs2-1 and acs2-2 because of the reduction of ACC and IAA accumulation in their root tips, while this reduction was rescued in transformants, including acs2 complementary (ACS2/acs2-1) and ACS2 overexpression (ACS2-OE) lines. The data showed that the decreased IAA levels resulted from increased activity of IAA conjugation enzymes, such as GH3.5 and GH3.9. These results suggest that ACS2 activity is an early response factor in the signaling pathway of NaCl-inhibited root growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACC:

1-Aminocyclopropane-1-carboxylic acid

ACS:

ACC synthase

CYCB1:

Cyclin B1

DAO1:

Dioxygenase for auxin oxidation 1

GH3:

Gretchen Hagen 3

GFP:

Green fluorescent protein

GUS:

β-Glucuronidase

IAA:

Indole-3-acetic acid

PI:

Propidium iodide

4-MUG:

4-Methylumbelliferyl-β-d-glucuronide

References

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Alessio VM, Cavaçana N, Dantas LLB, Lee N, Hotta CT, Imaizumi T, Menossi M (2018) The FBH family of bHLH transcription factors controls ACC synthase expression in sugarcane. J Exp Bot 69(10):2511–2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Ann Rev Cell Dev Biol 16(1):1–18

    Article  CAS  Google Scholar 

  • Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143(2):707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding ZJ, Yan JY, Li CX, Li GX, Wu YR, Zheng SJ (2015) Transcription factor WRKY46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis. Plant J 84(1):56–69

    Article  CAS  PubMed  Google Scholar 

  • Feng S, Yue R, Tao S, Yang Y, Zhang L, Xu M, Wang H, Shen C (2015) Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses. J Integr Plant Biol 57(9):783–795

    Article  CAS  PubMed  Google Scholar 

  • Fior S, Gerola PD (2009) Impact of ubiquitous inhibitors on the GUS gene reporter system: evidence from the model plants Arabidopsis, tobacco and rice and correction methods for quantitative assays of transgenic and endogenous GUS. Plant Methods 5(1):19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grieneisen VA, Xu J, Marée AF, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449(7165):1008–1013

    Article  CAS  PubMed  Google Scholar 

  • Hall KC, Pearce DME, Jackson MB (1989) A simplified method for determining 1-aminocyclopropane-1-carboxylic acid (ACC) in plant tissues using a mass selective detector. Plant Growth Regul 8(4):297–307

    Article  CAS  Google Scholar 

  • Han S, Fang L, Ren X, Wang W, Jiang J (2015a) MPK6 controls H2O2-induced root elongation by mediating Ca2+ influx across the plasma membrane of root cells in Arabidopsis seedlings. New Phytol 205(2):695–706

    Article  CAS  PubMed  Google Scholar 

  • Han S, Wang CW, Wang WL, Jiang J (2015b) Mitogen-activated protein kinase 6 controls root growth in Arabidopsis by modulating Ca2+-based Na+ flux in root cell under salt stress. J Plant Physiol 171(5):26–34

    Article  CAS  Google Scholar 

  • Korasick DA, Enders TA, Strader LC (2013) Auxin biosynthesis and storage forms. J Exp Bot 64(9):2541–2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavenus J, Goh T, Roberts I, Guyomarc’h S, Lucas M, De Smet I, Fukaki H, Beeckman T, Bennett M, Laplaze L (2013) Lateral root development in Arabidopsis: fifty shades of auxin. Trends Plant Sci 18(8):450–458

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhang L, Yu Y, Quan R, Zhang Z, Zhang H, Huang R (2011) The ethylene response factor AtERF11 that is transcriptionally modulated by the bZIP transcription factor HY5 is a crucial repressor for ethylene biosynthesis in Arabidopsis. Plant J 68(1):88–99

    Article  CAS  PubMed  Google Scholar 

  • Li J, Jia H, Wang J (2014) cGMP and ethylene are involved in maintaining ion homeostasis under salt stress in Arabidopsis roots. Plant Cell Rep 33(3):447–459

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Yin M, Li Y, Fan C, Yang Q, Wu J, Zhang C, Wang H, Zhou Y (2015) Expression of Brassica napus TTG2, a regulator of trichome development, increases plant sensitivity to salt stress by suppressing the expression of auxin biosynthesis genes. J Exp Bot 66(19):5821–5836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Pan Y, Chang B, Wang Y, Tang Z (2016) NO Promotes seed germination and seedling growth under high salt may depend on EIN3 protein in Arabidopsis. Front Plant Sci 6(346):1203

    PubMed  PubMed Central  Google Scholar 

  • Lin Z, Zhong S, Grierson D (2009) Recent advances in ethylene research. J Exp Bot 60(12):3311–3336

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Yang L, Paul M, Zu Y, Tang Z (2013) Ethylene promotes germination of Arabidopsis seed under salinity by decreasing reactive oxygen species: evidence for the involvement of nitric oxide simulated by sodium nitroprusside. Plant Physiol Biochem 73(6):211–218

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Shi Z, Yao L, Yue H, Li H, Li C (2013) Effect of IAA produced by Klebsiella oxytoca Rs-5 on cotton growth under salt stress. J Gen Appl Microbiol 59(1):59–65

    Article  PubMed  Google Scholar 

  • Ljung K (2013) Auxin metabolism and homeostasis during plant development. Development 140(5):943–950

    Article  CAS  Google Scholar 

  • Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H (2003) Control mechanism of the circadian clock for timing of cell division in vivo. Science 302(5643):255–259

    Article  CAS  PubMed  Google Scholar 

  • Mellor N, Band LR, Pěnčík A, Novák O, Rashed A, Holman T, Wilson MH, Voß U, Bishopp A, King JR, Ljung K, Bennett MJ, Owen MR (2016) Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis. Proc Natl Acad Sci USA 113(39):11022–11027

    Article  CAS  PubMed  Google Scholar 

  • Morgan PW, Drew MC (1997) Ethylene and plant responses to stress. Physiol Plantarum 100(3):620–630

    Article  CAS  Google Scholar 

  • Nazar R, Khan MI, Iqbal N, Masood A, Khan NA (2014) Involvement of ethylene in reversal of salt-inhibited photosynthesis by sulfur in mustard. Physiol Plant 152(2):331–344

    Article  CAS  PubMed  Google Scholar 

  • Normanly J (2010) Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb Perspect Biol 2(1):a001594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Růžička K, Ljung K, Vanneste S, PodhorskáR Beeckman T, Friml J, Benková E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19(7):2197–2212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh VK, Jain M, Garg R (2015) Genome-wide analysis and expression profiling suggest diverse roles of GH3 genes during development and abiotic stress responses in legumes. Front Plant Sci 5:789

    Article  PubMed  PubMed Central  Google Scholar 

  • Skottke KR, Yoon GM, Kieber JJ, DeLong A (2011) Protein phosphatase 2A controls ethylene biosynthesis by differentially regulating the turnover of ACC synthase isoforms. PLoS Genet 7(4):e1001370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchisaka A, Theologis A (2004) Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol 136(2):2982–3000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchisaka A, Yu G, Jin H, Alonso JM, Ecker JR, Zhang X, Gao S, Theologis A (2009) A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics 183(3):979–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vahala J, Ruonala R, Keinänen M, Tuominen H, Kangasjärvi J (2003) Ethylene insensitivity modulates ozone-induced cell death in birch. Plant Physiol 132(1):185–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Liang X, Wan Q, Wang X, Bi Y (2009) Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress. Planta 230(2):293–307

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Ma B, He SJ, Xiong Q, Duan KX, Yin CC, Chen H, Lu X, Chen SY, Zhang JS (2015) MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiol 169(1):148–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu YB, Adams DO, Yang SF (1979) 1-Aminocyclopropanecarboxylate synthase, a key enzyme in ethylene biosynthesis. Arch Biochem Biophys 198(1):280–286

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Peer WA (2017) Auxin homeostasis: the DAO of catabolism. J Exp Bot 68(12):3145–3154

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Zhizhong Gong for the kind of gift of DR5::GFP and DR5::GUS seeds. This work was supported by funding from the National Natural Science Foundation of China (Grant No. 31271510 to Jing Jiang, and U1504302 to Shuan Han).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Supplementary material 2 (PPTX 2815 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Jia, Mz., Yang, Jf. et al. The integration of ACS2-generated ACC with GH3-mediated IAA homeostasis in NaCl-stressed primary root elongation of Arabidopsis seedlings. Plant Growth Regul 88, 151–158 (2019). https://doi.org/10.1007/s10725-019-00495-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-019-00495-1

Keywords

Navigation