Skip to main content
Log in

Cloning and functional analysis of pale-green leaf (PGL10) in rice (Oryza sativa L.)

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Leaf color mutants commonly found in rice have important implications in basic research and breeding science. In this study, we isolated a pale-green leaf mutant (pgl10) from the offspring of the rice cultivar Nipponbare (Oryza sativa L. spp. japonica) through ethyl methanesulfonate mutagenesis. Compared with the wild-type Nipponbare, the pgl10 mutant had phenotypically pale-green leaves with significantly decreased chlorophyll (a and b) and carotenoid contents. Transmission electron micrographs showed that pgl10 had less grana lamellae of chloroplasts than Nipponbare. The results of tissue-specific gene expression analysis revealed that pgl10 was expressed in various rice organs, including roots, stems, leaves, sheaths, and spikes. The expression of Chl synthesis-associated gene in pgl10 was decreased. Genetic analysis suggested that PGL10 was controlled by a recessive gene. Map-based cloning and genome sequencing data showed that pgl10 was a frameshift mutation caused by a single base insertion on chromosome 10. Bioinformation analysis indicated that PGL10 encoded protochlorophyllide oxidoreductase B. Therefore, pgl10 can be a genetic material for further studies on PGL10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal GK, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H (2001) Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol 125:1248–1257. doi:10.1104/pp.125.3.1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XF, Hao L, Pan JW, Zheng XX, Jiang GH, Jin Y, Gu ZM, Qian Q, Zhai WX, Ma BJ (2012) SPL5, a cell death and defense-related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice. Mol Breed 30:939–949. doi:10.1007/s11032-011-9677-4

    Article  Google Scholar 

  • Feng BH, Yang Y, Shi YF, Lin L, Chen J, Wei YL, Leung H, Wu JL (2013) Genetic analysis and gene mapping of light brown spotted leaf mutant in rice. Rice Sci 20:13–18. doi:10.1016/S1672-6308(13)60102-X

    Article  CAS  Google Scholar 

  • Goff SA (1999) Rice as a model for cereal genomics. Curr Opin Plant Biol 2:86–89. doi:10.1016/S1369-5266(99)80018-1

    Article  CAS  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100. doi:10.1126/science.1068275

    Article  CAS  PubMed  Google Scholar 

  • Goh CH, Satoh K, Kikuchi S, Kim SC, Ko SM, Kang HG, Jeon JS, Kim CS, Park YL (2010) Mitochondrial activity in illuminated leaves of chlorophyll-deficient mutant rice (OsCHLH) seedlings. Plant Biotechnol Rep 4:281–291. doi:10.1007/s11816-010-0146-z

    Article  Google Scholar 

  • Gustafsson A (1940) The mutation system of the chlorophyll apparatus. Acta Univ Lund 36:1–40

  • Han SH, Sakuraba Y, Koh HJ, Paek NC (2012) Leaf variegation in the rice zebra2 mutant is caused by photoperiodic accumulation of tetra-Cis-lycopene and singlet oxygen. Mol Cells 33:89–97. doi:10.1007/s10059-012-2218-0

    Google Scholar 

  • He B, Liu LL, Zhang WW, Wan JM (2006) Leaf color mutants in plant. Plant Physiol Commun 42:1–9

    CAS  Google Scholar 

  • Jiang HW, Li MR, Liang NT, Yan HB, Wei YB, Xu XL, Liu J, Xu ZF, Chen F, Wu GJ (2007) Molecular cloning and function analysis of the stay green gene in rice. Plant J 52:197–209. doi:10.1111/j.1365-313X.2007.03221.x

    Article  CAS  PubMed  Google Scholar 

  • Kusaba M, Ito H, Morita R, Lida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A (2007) Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19:1362–1375. doi:10.1105/tpc.106.042911

  • Kusumi K, Sakata C, Nakamura T, Kawasaki S, Yoshimura A, Iba K (2011) A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions. Plant J 68:1039–1050. doi:10.1111/j.1365-313X.2011.04755.x

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kim JH, Yoo E, Lee CH, Hirochika H, An GH (2005) Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol 57:805–818. doi:10.1007/s11103-005-2066-9

    Article  CAS  PubMed  Google Scholar 

  • Mitchell PL, Sheehy JE (2006) Supercharging rice photosynthesis to increase yield. New Phytol 171:688–693. doi:10.1111/j.1469-8137.2006.01855.x

    Article  CAS  PubMed  Google Scholar 

  • Pan XW, Li YC, Li XX, Liu WQ, Ming J, Lu TT, Tan J, Sheng XN (2013) Differential regulatory mechanisms of CBF regulon between Nipponbare (Japonica) and 93-11 (Indica) during cold acclimation. Rice Sci 20:165–172. doi:10.1016/S1672-6308(13)60121-3

    Article  Google Scholar 

  • Park SY, Yu JW, Park JS, Li JJ, Yoo SC, Lee NY, Lee SK, Jeong SW, Seo HS, Koh HJ, Jeon JS, Park YL, Paek NC (2007) The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19:1649–1664. doi:10.1105/tpc.106.044891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuraba Y, Rahman ML, Cho SH, Kim YS, Koh HJ, Yoo SC, Paek NC (2013) The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J 74:122–133. doi:10.1111/tpj.12110

    Article  CAS  PubMed  Google Scholar 

  • Su NN, Wu Q, Shen ZG, Xia K, Cui J (2014) Effects of light quality on the chloroplastic ultrastructure and photosynthetic characteristics of cucumber seedlings. Plant Growth Regul 73:227–235. doi:10.1007/s10725-013-9883-7

    Article  CAS  Google Scholar 

  • Sugimoto H, Kusumi K, Noguchi K, Yano M, Yoshimura A, Iba K (2007) The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. Plant J 52:512–527. doi:10.1111/j.1365-313X.2007.03251.x

    Article  CAS  PubMed  Google Scholar 

  • Takai T, Adachi S, Taguchi-Shiobara F, Sanoh-Arai Y, Iwasawa N, Yoshinaga S, Hirose S, Taniguchi Y, Yamanouchi U, Wu J, Matsumoto T, Sugimoto K, Kondo K, Ikka T, Ando T, Kono I, Ito S, Shomura A, Ookawa T, Hirasawa T, Yano M, Kondo M, Yamamoto T (2013) A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Sci Rep 3:2149. doi:10.1038/srep02149

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei XD, Shi DW, Chen GX (2013) Physiological, structural, and proteomic analysis of chloroplasts during natural senescence of Ginkgo leaves. Plant Growth Regul 69:191–201. doi:10.1007/s10725-012-9761-8

    Article  CAS  Google Scholar 

  • Wu DX, Shu QY, Xia YW (2002) In vitro mutagenesis induced novel thermo/photoperiod-sensitive genic male sterile indica rice with green-revertible xanthan leaf color marker. Euphytica 123:195–202. doi:10.1023/A:1014924418395

    Article  Google Scholar 

  • Wu ZM, Zhang X, He B, Diao LP, Sheng SL, Wang JL, Guo XP, Su N, Wang LF, Jiang L, Wang CM, Zhai HQ, Wan JM (2007) A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol 145:29–40. doi:10.1104/pp.107.100321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K (2002) A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA 99:7530–7535. doi:10.1073/pnas.112209199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo SC, Cho SH, Sugimoto H, Li JJ, Kusumi K, Koh HJ, Iba K, Paek NC (2009) Rice Virescent3 and Stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol 150:388–401. doi:10.1104/pp.109.136648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92. doi:10.1126/science.1068037

    Article  CAS  PubMed  Google Scholar 

  • Yuan LP (2014) Development of hybrid rice to ensure food security. Rice Sci 21:1–2. doi:10.1016/S1672-6308(13)60167-5

    Article  Google Scholar 

  • Zeng LR, Qu SH, Bordeos A, Yang CW, Baraoidan M, Yan HY, Xie Q, Nahm BH, Leung H, Wang GL (2004) Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16:2795–2808. doi:10.1105/tpc.104.025171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HT, Li JJ, Yoo JH, Yoo SC, Cho SH, Koh HJ, Seo HS, Paek NC (2006) Rice chlorina-1 and chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol 62:325–337. doi:10.1007/s11103-006-9024-z

    Article  CAS  PubMed  Google Scholar 

  • Zhang LK, Li ZB, Liu HY, Li RH, Chen MY, Chen AG, Qian YL, Hua ZT, Gao YM, Zhu LH, Li ZK (2010) Study on morphological structure and genetic mapping of two novel leaf color mutants in rice. Sci Agric Sin 43:223–229. doi:10.3864/j.issn.0578-1752.2010.02.001

    CAS  Google Scholar 

  • Zhao Y, Wang M, Zhang Y, Du L, Pan T (2000) A chlorophyll-reduced seedling mutant in oilseed rape, Brassica napus, for utilization in F1 hybrid production. Plant Breed 119:131–135. doi:10.1046/j.1439-0523.2000.00453.x

    Article  Google Scholar 

  • Zhu L, Liu WZ, Wu C, Luan WJ, Fu YP, Hu GC, Si HM, Sun ZX (2007) Identification and fine mapping of a gene related to pale green leaf phenotype near the centromere region in rice. Rice Sci 14:172–180

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the State Key Basic Research Program (2013CBA01403), the Ministry of Agriculture of China for transgenic research (No. 2013ZX08009003-001) and the National Natural Science Foundation of China (31171531, 31221004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da-Li Zeng or Qing-Hua Shi.

Additional information

Yao-Long Yang and Jie Xu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YL., Xu, J., Rao, YC. et al. Cloning and functional analysis of pale-green leaf (PGL10) in rice (Oryza sativa L.). Plant Growth Regul 78, 69–77 (2016). https://doi.org/10.1007/s10725-015-0075-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-015-0075-5

Keywords

Navigation