Skip to main content
Log in

Adult plant resistance to Puccinia triticina in a geographically diverse collection of Aegilops tauschii

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Despite extensive genetics and breeding research, effective control of leaf rust caused by Puccinia triticina Eriks. and an important foliar disease of wheat, has not been achieved. This is mainly due to the widespread use of race-specific seedling resistance genes, which are rapidly overcome by new virulent races. There is increased emphasis now on the use of race-nonspecific adult plant resistance (APR) genes for durable control of leaf rust. The objective of this study was the evaluation of Aegilops tauschii Coss. (the D-genome donor of bread wheat) for APR, previously known to be a rich source of seedling resistance genes to leaf rust. A geographically diverse collection of A. tauschii maintained by the Wheat Genetics Resource Center was evaluated for APR in the field with a leaf rust composite culture of predominant races. Out of a total of 371 A. tauschii accessions, 50 with low to moderate levels of disease severity were subsequently tested at the seedling stage in the greenhouse with four races and one composite culture of leaf rust. Nine accessions displayed moderate resistance to one or more races of leaf rust at the seedling stage. The remaining 41 seedling-susceptible accessions are potential sources of new APR genes. Accessions from Afghanistan only displayed APR whereas both seedling resistance and APR were common in the Caspian Sea region (Iran and Azerbaijan). The APR in these newly identified A. tauschii accessions will be further characterized for novelty, effectiveness, and race-specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Assefa S, Fehrmann H (2000) Resistance to wheat leaf rust in Aegilops tauschii Coss. and inheritance of resistance genes in hexaploid wheat. Genet Resour Crop Evol 47:395–398

    Article  Google Scholar 

  • Assefa S, Fehrmann H (2004) Evaluation of Aegilops tauschii Coss. for resistance to wheat stem rust and inheritance of resistance genes in hexaploid wheat. Genet Resour Crop Evol 51:663–669

    Article  CAS  Google Scholar 

  • Bariana H, Brown G, Bansal U, Miah H, Staden G, Lu M (2007) Breeding triple resistant wheat cultivars for Australia using conventional and marker-assisted selection technologies. Aust J Agric Res 58:576–587

    Article  Google Scholar 

  • Browder LE, Young HC (1975) Further development of an infection-type coding system for the cereal rusts. Plant Dis Rep 59:964–965

    Google Scholar 

  • Caldwell RM (1968) Breeding for general and/or specific plant disease resistance. In: Finlay KW, Shepherd KW (eds) Proceedings of the 3rd international wheat genetic symposium, Australian Academy of Science, Canberra, Australia, pp 263–272

  • Chen W, Liu T, Gao L (2013) Suppression of stripe rust and leaf rust resistances in interspecific crosses of wheat. Euphytica 192:339–346

    Article  CAS  Google Scholar 

  • Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T, Feuillet C, Keller B, Jordan MC (2007) Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol 65:93–106

    Article  CAS  PubMed  Google Scholar 

  • Cox TS, Sears RG, Gill BS (1991) Fall cereal conference, Manhattan, KS 1–2 Aug, pp 18–20

  • Cox TS, Raupp WJ, Wilson DL, Gill BS, Leath S, Bockus WW, Browder LE (1992) Resistance to foliar diseases in a collection of T. tauschii germplasm. Plant Dis 76:1061–1064

    Article  Google Scholar 

  • Cox TS, Raupp WJ, Gill BS (1994) Leaf rust-resistance genes Lr41, Lr42 and Lr43 transferred from Triticum tauschii to common wheat. Crop Sci 34:339–343

    Article  Google Scholar 

  • Cox TS, Hussien T, Sears RG, Gill BS (1997) Registration of KS92WGRC16 winter wheat germplasm resistant to leaf rust. Crop Sci 37:634

    Article  Google Scholar 

  • Dhaliwal HS, Singh H, Gupta S, Bagga PS, Gill KS (1991) Evaluation of Aegilops and wild Triticum species for resistance to leaf rust (Puccinia recondita f. sp. tritici) of wheat. Int J Trop Agric 9:118–122

    Google Scholar 

  • Dhaliwal HS, Singh H, Williams M (2002) Transfer of rust resistance from Aegilops ovata into bread wheat (Triticum aestivum L.) and molecular characterization of resistant derivatives. Euphytica 126:152–159

    Article  Google Scholar 

  • Dyck PL (1977) Genetics of leaf rust reaction in three introductions of common wheat. Can J Genet Cytol 19:711–716

    Article  Google Scholar 

  • Dyck PL, Kerber ER (1970) Inheritance in hexaploid wheat of adult-plant leaf rust resistance derived from Aegilops squarrosa. Can J Genet Cytol 12:175–180

    Article  Google Scholar 

  • Dyck PL, Kerber ER (1985) Resistance of the race-specific type. In: Roelfs AP, Bushnell WR (eds) The cereal rusts, vol II. Academic Press Inc., Orlando, FL, pp 469–500

    Google Scholar 

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Nat Aca Sci 100:15253–15258

    Article  CAS  Google Scholar 

  • Gill BS, Raupp WJ (1987) Direct genetic transfers from Aegilops squarrosa L. to hexaploid wheat. Crop Sci 27:445–450

    Article  Google Scholar 

  • Gill BS, Browder LE, Hatchett JH, Harvey TL, Raupp WJ, Sharma HC, Waines JG (1983) Disease and insect resistance in wild wheats. In: Proceedings of the international wheat genetics symposium, 6th edn, Kyoto, Japan, 785–792

  • Gill BS, Sharma HC, Raupp WJ, Browder LE, Hatchett JH, Harvey TL, Moseman JG, Waines JG (1985) Evaluation of Aegilops species for resistance to wheat powdery mildew, wheat leaf rust, Hessian fly and greenbug. Plant Dis 69:314–316

    Google Scholar 

  • Gill BS, Raupp WJ, Sharma HC, Browder LE, Hatchett JH, Harvey TL, Moseman JG, Waines JG (1986) Resistance in Aegilops squarrosa to wheat leaf rust, wheat powdery mildew, greenbug, and hessian fly. Plant Dis 70:553–556

    Article  Google Scholar 

  • Gill BS, Huang L, Kuraparthy V, Raupp WJ, Wilson DL, Friebe B (2008) Alien genetic resources for wheat leaf rust resistance, cytogenetic transfer, and molecular analysis. Aust J Agric Res 59:197–208

    Article  CAS  Google Scholar 

  • Harvey TL, Martin TJ, Lvers RW (1980) Resistance to biotype C greenbug in synthetic hexaploid wheats derived from Triticum tauschii. J Econ Entomol 73:387–389

    Article  Google Scholar 

  • Herrera-Foessel SA, Lagudah ES, Huerta-Espino J, Hayden M, Bariana HS, Singh D, Singh RP (2010) New slow rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet 122:239–249

    Article  PubMed  Google Scholar 

  • Herrera-Foessel SA, Singh RP, Huerta-Espino J, Rosewarne GM, Sambasivam KP, Viccars L, Calvo-Salazar V, Lan C, Lagudah ES (2012) Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat. Theor Appl Genet 124:1475–1486

    Article  CAS  PubMed  Google Scholar 

  • Hiebert CW, Thomas JB, Somers DJ, McCallum BD, Fox SL (2007) Microsatellite mapping of adult-plant leaf rust resistance gene Lr22a in wheat. Theor Appl Genet 115:877–884

    Article  CAS  PubMed  Google Scholar 

  • Hiebert CW, Thomas JB, McCallum BD, Humphreys G, DePauw RG, Hayden M, Mago R, Schnippenkoetter W, Spielmeyer W (2010) An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theor Appl Genet 121:1083–1091

    Article  PubMed  Google Scholar 

  • Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map based cloning of leaf rust resistance gene Lr21 from the large and polyploidy genome of bread wheat. Genetics 164:655–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Brooks S, Li W, Fellers J, Nelson JC, Gill BS (2009) Evolution of new disease specificity at a simple resistance locus in a crop-weed complex: reconstitution of the Lr21 gene in wheat. Genetics 182:595–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huerta-Espino J, Singh RP, German S, McCallum BD, Park RF, Chen WQ, Bhardwaj SC, Goyeau H (2011) Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 179:143–160

    Article  Google Scholar 

  • Kalia B, Wilson DL, Bowden RL, Singh RP, Gill BS (2014) Genetic analysis of adult plant resistance to leaf rust transferred from Aegilops tauschii to wheat. Borlaug Global Rust Initiative, Ciudad Obregon, Sonora, Mexico, 22–25 Mar 2014

  • Kerber ER (1964) Wheat: reconstitution of the tetraploid component (AABB) of hexaploids. Science 143:253–255

    Article  CAS  PubMed  Google Scholar 

  • Kerber ER (1987) Resistance to leaf rust in wheat: Lr32, a third gene derived from Triticum tauschii. Crop Sci 27:204–206

    Article  Google Scholar 

  • Kerber ER, Dyck PL (1979) Resistance of stem rust and leaf rust of wheat in Aegilops squarrosa and transfer of a gene for stem rust resistance to hexaploid wheat. In: Ramanijam S (ed) Proceedings of the 5th international wheat genetics symposium, New Delhi, India, pp 358–364

  • Kihara H, Tanaka M (1958) Morphological and physiological variation among Aegilops squarrosa strains collected in Pakistan, Afghanistan and Iran. Preslia 30:241–251

    Google Scholar 

  • Kihara H, Yamashita K, Tanaka M (1965) Morphological, physiological, genetical and cytological studies in Aegilops and Triticum collected from Pakistan, Afghanistan and Iran. In: Yamashita K (ed) Results of the Kyoto University Scientific Expedition to the Karakoram and Hindukush. Kyoto University, Kyoto, pp 1–118

    Google Scholar 

  • Kolmer JA (1996) Genetics of resistance to wheat leaf rust. Annu Rev Phytopathol 34:435–455

    Article  CAS  PubMed  Google Scholar 

  • Kolmer JA, Hughes ME (2014) Physiologic specialization of Puccinia triticina on wheat in the United States in 2012. Plant Dis 98:1145–1150

    Article  Google Scholar 

  • Kolmer JA, Jin Y, Long DL (2007) Wheat leaf and stem rust in the United States. Aust J Agric Res 58:631–638

    Article  Google Scholar 

  • Kolmer JA, Singh RP, Garvin DF, Viccars L, William HM, Huerta-Espino J, Ogbonnaya FC, Raman H, Orford S, Bariana HS, Lagudah ES (2008) Analysis of the Lr34/Yr18 rust resistance region in wheat germplasm. Crop Sci 48:1841–1852

    Article  CAS  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Lagudah ES, McFadden H, Singh RP, Huerta-Espino J, Bariana HS, Spielmeyer W (2006) Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet 114:21–30

    Article  CAS  PubMed  Google Scholar 

  • Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bjørnstad Å (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Ling HQ, Qiu JW, Singh RP, Keller B (2004) Identification and genetic characterization of an Aegilops tauschii ortholog of the wheat leaf rust disease resistance gene Lr1. Theor Appl Genet 109:1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Long DL, Kolmer JA (1989) A North American system of nomenclature for Puccinia triticina. Phytopathology 79:525–529

    Article  Google Scholar 

  • Lubbers EL, Gill KS, Cox TS, Gill BS (1991) Variation of molecular markers among geographically diverse accessions of Triticum tauschii. Genome 34:354–361

    Article  Google Scholar 

  • Luig NH, McIntosh RA (1968) Location and linkage of genes on wheat chromosome 2D. Can J Genet Cytol 10:99–105

    Article  Google Scholar 

  • Martinez F, Niks RE, Singh RP, Rubiales D (2001) Characterization of Lr46, a gene conferring partial resistance to wheat leaf rust. Hereditas 135:111–114

    Article  CAS  PubMed  Google Scholar 

  • McFadden ES, Sears ER (1944) The artificial synthesis of Triticum spelta. Res Genet Soc Am 13:26–27

    Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37:81–89

    Article  PubMed  Google Scholar 

  • McIntosh RA (1992) Close genetic linkage of genes conferring adult-plant resistance to leaf rust and stripe rust in wheat. Plant Path 41:523–527

    Article  Google Scholar 

  • McIntosh RA, Baker EP, Driscoll CJ (1965) Cytogenetic studies in wheat. I. Monosomic analysis of leaf rust resistance in cultivars uruguay and transfer. Aust J Biol Sci 18:971–977

    Article  Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. Kluwer Academic Publishers, London

    Book  Google Scholar 

  • Ogbonnaya FC, Halloram GM, Lagudah ES (2005) D genome of wheat-60 years on from Kihara, Sears and McFadden. In: Tsunewaki K (ed) Frontiers of wheat bioscience, the 100th memorial issue of wheat information service. Kihara Memorial Foundation for the Advancement of Life Sciences, Yokohama, pp 205–220

    Google Scholar 

  • Ogbonnaya FC, Abdalla O, Mujeeb-Kazi A, Kazi AG, Xu SS, Gosman N, Lagudah ES, Bonnett D, Sorrells ME (2013) Synthetic hexaploid in wheat improvement. In: Janick J (ed) Plant breeding reviews, 37th edn. Wiley, NewYork, pp 35–122

    Chapter  Google Scholar 

  • Park RF, McIntosh RA (1994) Adult plant resistances to Puccinia recondita f.sp. tritici in wheat. N Z J Crop Hortic Sci 22:151–158

    Article  Google Scholar 

  • Peterson RF, Campbell AB, Hannah AE (1948) A diagrammatic scale for estimation rust severity on leaves and stems of cereals. Can J Res 26:496–500

    Article  Google Scholar 

  • Roelfs AP, Singh RP, Saari EE (1992) Rust diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico, DF

    Google Scholar 

  • Rouse MN, Olson EL, Gill BS, Pumphery MO, Jin Y (2011) Stem rust resistance in Aegilops tauschii germplasm. Crop Sci 51:2074–2078

    Article  Google Scholar 

  • Rowland GG, Kerber ER (1974) Telocentric mapping in hexaploid wheat of genes for leaf rust resistance and other characters derived from Aegilops squarrosa. Can J Genet Cytol 16:137–144

    Article  Google Scholar 

  • Singh RP (1992) Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat. Phytopathology 82:835–838

    Article  Google Scholar 

  • Singh RP (1993) Genetic association of gene Bdv1 for tolerance to barley yellow dwarf virus with genes Lr34 and Yr18 for adult plant resistance to rusts in bread wheat. Plant Dis 77:1103–1106

    Article  Google Scholar 

  • Singh RP, Mujeeb-Kazi A, Huerta-Espino J (1998) Lr46: a gene conferring slow-rusting to leaf rust in wheat. Phytopathology 88:890–894

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Huerta-Espino J, Rajaram S (2000) Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytopathol Entomol Hung 35:133–139

    CAS  Google Scholar 

  • Singh S, Franks CD, Huang L, Brown-Guedira GL, Marshall DS, Gill BS (2004) Lr41, Lr39, and a leaf rust resistance gene from Aegilops cylindrica may be allelic and are located on wheat chromosome 2DS. Theor Appl Genet 108:586–591

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Huerta-Espino J, William HM (2005) Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turk J Agric For 29:121–127

    CAS  Google Scholar 

  • Singh RP, Huerta-Espino J, Bhavani S, Herrera-Foessel SA, Singh D, Singh PK, Velu G, Mason RE, Jin Y, Njau P, Crossa J (2011) Race non-specific resistance to rust diseases in CIMMYT wheats. Euphytica 179:175–186

    Article  Google Scholar 

  • Snyman JE, Pretorius ZA, Kloppers FJ, Marais GF (2004) Detection of adult-plant resistance to Puccinia triticina in a collection of wild Triticum species. Genet Resour Crop Evol 51:591–597

    Article  Google Scholar 

  • Spielmeyer W, McIntosh RA, Kolmer J, Lagudah ES (2005) Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet 111:731–735

    Article  CAS  PubMed  Google Scholar 

  • Stakman EC, Stewart DM, Loegering WQ (1962) Identification of physiological races of Puccinia graminis var. tritici US Dept Agric, ARS E617

  • Valkoun J, Hammer K, Kucerova D, Bartos P (1985) Disease resistance in the genus Aegilops L.—stem rust, leaf rust, stripe rust and powdery mildew. Kulturpflanze 33:133–153

    Article  Google Scholar 

  • Vavilov NI (1939) Selekstia ustoichovykh sortov kak osnovnoi metod borby s rshavchinoi (Selection of resistant varieties as a basic method for rust control). In: Naumov NZ, Zubareva AK (eds) Rshavchina Zernovykh Kultur” (Rusts of cereal crops). Moscow, Selkhozgyz, pp 3–20

    Google Scholar 

  • Wang J, Luo MC, Chen Z, You FM, Wei Y, Zheng Y, Dvorak J (2013) Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol 198:925–937

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Contribution no. 15-039-J from the Kansas Agricultural Experiment Station. We thank Li Huang for her contributions to research during preliminary trials. Research was supported by a Monsanto Beachell-Borlaug International scholarship to Bhanu Kalia, Kansas Wheat commission, Kansas Agricultural Experiment Station and WGRC-I/UCRC NSF Grant (IIP-1338897).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikram S. Gill.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalia, B., Wilson, D.L., Bowden, R.L. et al. Adult plant resistance to Puccinia triticina in a geographically diverse collection of Aegilops tauschii . Genet Resour Crop Evol 64, 913–926 (2017). https://doi.org/10.1007/s10722-016-0411-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-016-0411-2

Keywords

Navigation