Skip to main content
Log in

The generalized Klein–Gordon oscillator with Coulomb-type potential in (1+2)-dimensions Gürses space–time

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this article, we investigate the relativistic quantum dynamics of spin-0 particles in (1+2)-dimensions Gürses space–time Gürses (Class Quantum Grav 11:2585, 1994) with interactions. We solve the generalized Klein–Gordon oscillator subject to Coulomb-type potential in the considered framework, and evaluate the energy eigenvalues and corresponding wave function, in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, T.Y., Hwang, W.Y.P.: Relativistic Quantum Mechanics and Quantum Fields. World Scientific Publishing Co. Pvt. Ltd., Singapore (1991)

    Book  Google Scholar 

  2. Greiner, W.: Relativistic Quantum Mechanics: Wave Equations. Springer, Berlin (2000)

    Book  Google Scholar 

  3. Gödel, K.: Rev. Mod. Phys. 21, 447 (1949)

    Article  ADS  Google Scholar 

  4. Figueiredo, B.D., Soares, I.D., Tiomno, J.: Class. Quantum Grav. 9, 1593 (1992)

    Article  ADS  Google Scholar 

  5. Drukker, N., Fiol, B., Simon, J.: JCAP 0410, 012 (2004)

    Article  ADS  Google Scholar 

  6. Drukker, N., Fiol, B., Simon, J.: Phys. Rev. Lett. 91, 231601 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  7. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics: Non-relativistic Theory, Course of Theoretical Physics, vol. 3. Pergamon Press, Oxford (1965)

    MATH  Google Scholar 

  8. Das, S., Gegenberg, J.: Gen. Relativ. Gravit. 40, 2115 (2008)

    Article  ADS  Google Scholar 

  9. Wang, Z., Long, Z., Long, C., Wu, M.: EPJ Plus 130, 36 (2015)

    Google Scholar 

  10. Carvalho, J., Carvalho, A.M.de M., Furtado, C.: EPJ C 74, 2935 (2014)

    ADS  Google Scholar 

  11. Carvalho, J., Carvalho, A.M.D.M., Cavalcante, E., Furtado, C.: EPJ C 76, 365 (2016)

    ADS  Google Scholar 

  12. Garcia, G.Q., Oliveira, J.R.de S., Bakke, K., Furtado, C.: EPJ Plus 132, 123 (2017)

    Google Scholar 

  13. Garcia, G.Q., Oliveira, J.R.de S., Furtado, C.: Int. J. Mod. Phys. D 27, 1850027 (2018)

    Article  ADS  Google Scholar 

  14. Fernandes, S.G., Marques, G.de A., Bezerra, V.B.: Class. Quantum Grav. 23, 7063 (2006)

    Article  ADS  Google Scholar 

  15. Havare, A., Yetkin, T.: Class. Quantum Grav. 19, 1 (2002)

    Article  Google Scholar 

  16. Santos, L.C.N., Barros Jr., C.C.: Eur. Phys. J. C 76, 560 (2016)

    Article  ADS  Google Scholar 

  17. Ahmed, F.: Eur. Phys. J. C 78, 598 (2018)

    Article  ADS  Google Scholar 

  18. Ahmed, F.: Eur. Phys. J. C 79, 104 (2019)

    Article  ADS  Google Scholar 

  19. de Souza Dutra, A., Jia, C.-S.: Phys. Lett. A 352, 484 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  20. Qiang, W.-C., Zhou, R.-S., Gao, Y.: Phys. Lett. A 371, 201 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. de Castro, A.S.: Phys. Lett. A 338, 81 (2005)

    Article  ADS  Google Scholar 

  22. Alhaidari, A.D., Bahlouli, H., Al-Hasan, A.: Phys. Lett. A 349, 87 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. Domingues-Adame, F.: Phys. Lett. A 136, 175 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  24. Xu, Y., He, S., Jia, C.-S.: Phys. Scr. 81, 045001 (2010)

    Article  ADS  Google Scholar 

  25. de Souza Dutra, A., Chen, G.: Phys. Lett. A 349, 297 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  26. Chen, G.: Phys. Lett. A 339, 300 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  27. Ikhdair, S.M.: Eur. Phys. J. A 40, 143 (2009)

    Article  ADS  Google Scholar 

  28. Ma, Z.Q., Dong, S.H., Gu, X.Y., Yu, J.: Int. J. Mod. Phys. E 13, 597 (2004)

    Article  ADS  Google Scholar 

  29. Alhaidari, A.D.: Phys. Lett. A 322, 12 (2004)

    Article  Google Scholar 

  30. Jia, C.S., Liu, J.-Y., Wang, P.-Q., Che, C.S.: Phys. Lett. A 369, 274 (2007)

    Article  ADS  Google Scholar 

  31. Jia, C.S., Dutra, A.S.: Ann. Phys. (N. Y.) 323, 566 (2008)

    Article  ADS  Google Scholar 

  32. Mustafa, O., Mazharimousavi, S.H.: Int. J. Theor. Phys. 47, 446 (2008)

    Article  Google Scholar 

  33. Wen-Chao, Q.: Chin. Phys. 12, 1054 (2003)

    Article  ADS  Google Scholar 

  34. Motavalli, H., Akbarieh, A.R.: Mod. Phys. Lett. A 25, 2523 (2010)

    Article  ADS  Google Scholar 

  35. Yasuk, F., Durmus, A., Boztosun, I.: J. Math. Phys. 47, 082302 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  36. Cavalcanti de Oliveira, A.L., Bezerra de Mello, E.R.: Class. Quantum Grav. 23, 5249 (2006)

    Article  ADS  Google Scholar 

  37. Asada, H., Futamase, T.: Phys. Rev. D 56, R6062 (1997)

    Article  ADS  Google Scholar 

  38. Chrichfield, C.L.: J. Math. Phys. 17, 261 (1976)

    Article  ADS  Google Scholar 

  39. Figueiredo Medeiros, E.R., de Mello, E.R.B.: Eur. Phys. J. C 72, 2051 (2012)

    Article  ADS  Google Scholar 

  40. Ahmed, F.: Ann. Phys. (N. Y.) 401, 193 (2019)

    Article  ADS  Google Scholar 

  41. Bahar, M.K., Yasuk, F.: Adv. High Energy Phys. 2013, 814985 (2013)

    Article  Google Scholar 

  42. Kumar, R., Chand, F.: Phys. Scr. 85, 055008 (2012)

    Article  ADS  Google Scholar 

  43. Moshinsky, M., Szczepaniak, A.: J. Phys. A Math. Gen. 22, L817 (1989)

    Article  ADS  Google Scholar 

  44. Bruce, S., Minning, P.: Nuovo Cimento II 106 A, 711 (1993)

    Article  ADS  Google Scholar 

  45. Dvoeglazov, V.V.: Nuovo Cimento II 107 A, 1413 (1994)

    ADS  Google Scholar 

  46. Rao, N.A., Kagali, B.A.: Phys. Scr. 77, 015003 (2008)

    Article  Google Scholar 

  47. Boumali, A., Hafdallah, A., Toumi, A.: Phys. Scr. 84, 037001 (2011)

    Article  ADS  Google Scholar 

  48. Mirza, B., Mohadesi, M.: Commun. Theor. Phys. 42, 664 (2004)

    Article  ADS  Google Scholar 

  49. Mirza, B., Narimani, R., Zare, S.: Commun. Theor. Phys. 55, 405 (2011)

    Article  Google Scholar 

  50. Liang, M.-L., Yang, R.-L.: Int. J. Mod. Phys. A 27, 1250047 (2012)

    Article  ADS  Google Scholar 

  51. Xiao, Y., Long, Z., Cai, S.: Int. J. Theor. Phys. 50, 3105 (2011)

    Article  Google Scholar 

  52. Cheng, J.-Y.: Int. J. Theor. Phys. 50, 228 (2011)

    Article  Google Scholar 

  53. Wu, S.-R., Long, Z.-W., Long, C.-Y., Wang, B.-Q., Liu, Y.: Int. J. Mod. Phy. A 32, 1750148 (2017)

    Article  ADS  Google Scholar 

  54. Bakke, K., Furtado, C.: Ann. Phys. (N. Y.) 355, 48 (2015)

    Article  ADS  Google Scholar 

  55. Vitoria, R.L.L., Furtado, C., Bakke, K.: Ann. Phys. (N. Y.) 370, 128 (2016)

    Article  ADS  Google Scholar 

  56. Vitoria, R.L.L., Bakke, K.: EPJ Plus 131, 36 (2016)

    Google Scholar 

  57. Boumali, A., Messai, N.: Can. J. Phys. 92, 1460 (2014)

    Article  ADS  Google Scholar 

  58. Santosa, L.C.N., Barros Jr., C.C.: EPJ C 78, 13 (2018)

    ADS  Google Scholar 

  59. Ahmed, F.: Ann. Phys. (N. Y.) 404, 1 (2019)

    Article  ADS  Google Scholar 

  60. Gürses, M.: Class Quantum Grav. 11, 2585 (1994)

    Article  ADS  Google Scholar 

  61. Nikiforov, A.F., Uvarov, V.B.: Special Functions of Mathematical Physics. Birkhäuser, Basel (1988)

    Book  Google Scholar 

  62. Vercin, A.: Phys. Lett. B 260, 120 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  63. Myrhein, J., Halvorsen, E., Vercin, A.: Phys. Lett. B 278, 171 (1992)

    Article  ADS  Google Scholar 

  64. Ronveaux, A.: Heun’s Differential Equations. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  65. Bakke, K.: Ann. Phys. (N. Y.) 341, 86 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  66. Furtado, C., da Cunha, B.C.G., Moraes, F., de Mello, E.R.B., Bezerra, V.B.: Phys. Lett. A 195, 90 (1994)

    Article  ADS  Google Scholar 

  67. Bakke, K., Belich, H.: Ann. Phys. (N. Y.) 333, 272 (2013)

    Article  ADS  Google Scholar 

  68. Bakke, K., Belich, H.: Eur. Phys. J. Plus 127, 102 (2012)

    Article  Google Scholar 

  69. Deser, S., Jackiw, R., T’Hooft, G.: Ann. Phys. (N. Y.) 152, 220 (1984)

    Article  ADS  Google Scholar 

  70. Deser, S., Jackiw, R.: Ann. Phys. (N. Y.) 153, 405 (1984)

    Article  ADS  Google Scholar 

  71. Witten, E.: Nucl. Phys. B 311, 46 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  72. Banados, M., Teitelboim, C., Zanelli, J.: Phys. Rev. Lett. 69, 1849 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  73. Marolf, D.M.: Class. Quantum Grav. 10, 2625 (1993)

    Article  ADS  Google Scholar 

  74. Carlip, S., Nelson, J.E.: Phys. Rev. D 51, 5643 (1995)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank the anonymous kind referee(s) for their valuable comments and suggestions which have greatly improved the present text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faizuddin Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: (1+2)-dimensions Gürses metric

The (1+2)-dimensions space–time considered by Gürses in [60] (see Eq. (4), notations are same) is given by

$$\begin{aligned} ds^2=-\phi \,dt^2+2\,q\,dt\,d\theta +\frac{-q^2+h^2\,\psi }{\phi }\, d\theta ^2+\frac{1}{\psi }\,dr^2, \end{aligned}$$
(A.1)

where

$$\begin{aligned}&\phi =a_0,\quad \psi =b_0+\frac{b_1}{r^2} +\frac{3\,\lambda _0}{4}\,r^2,\quad h=e_0\,r,\nonumber \\&q=c_0+\frac{e_0\,\mu }{3}\,r^2,\quad \lambda _0=\lambda +\frac{\mu ^2}{27} \end{aligned}$$
(A.2)

and where \(a_0,b_0,b_1,c_0,e_0\) are arbitrary constants.

Setting the constants below

$$\begin{aligned} b_1=0,\quad c_0=0,\quad \lambda _0=0 \end{aligned}$$
(A.3)

into the metric (A.1), we arrive the following metric

$$\begin{aligned} ds^2=-a_0\,dt^2+\frac{2\,e_0\,\mu }{3}\,r^2\,dt\,d\theta +\frac{1}{a_0}\,\left( e^{2}_{0}\,b_0\,r^2-\frac{e^{2}_{0}\,\mu ^{2}}{9}\,r^4\right) \, d\theta ^2+\frac{1}{b_0}\,dr^2.\nonumber \\ \end{aligned}$$
(A.4)

Finally choosing the constants

$$\begin{aligned} a_0=1,\quad b_0=1,\quad e_0=1,\quad \Omega =-\frac{\mu }{3} \end{aligned}$$
(A.5)

into the metric (A.4), we get the study space–time (1) presented in this work.

Appendix B: Brief review of the Nikiforov–Uvarov (NU) method

The Nikiforov–Uvarov method is helpful in order to find eigenvalues and eigenfunctions of the Schrödinger like equation, as well as other second-order differential equations of physical interest. According to this method, the eigenfunctions of a second-order differential equation [61]

$$\begin{aligned} \frac{d^2 \psi (s)}{ds^2}+\frac{(\alpha _1-\alpha _2\,s)}{s\,(1-\alpha _3\,s)}\,\frac{d \psi (s)}{ds}+\frac{(-\xi _1\,s^2+\xi _2\,s-\xi _3)}{s^2\,(1-\alpha _3\,s)^2}\,\psi (s)=0. \end{aligned}$$
(B.1)

are given by

$$\begin{aligned} \psi (s)=s^{\alpha _{12}}\,(1-\alpha _3\,s)^{-\alpha _{12} -\frac{\alpha _{13}}{\alpha _3}}\,P^{(\alpha _{10}-1,\frac{\alpha _{11}}{\alpha _3}-\alpha _{10}-1)}_{n}\,(1-2\,\alpha _3\,s). \end{aligned}$$
(B.2)

And that the energy eigenvalues equation

$$\begin{aligned}&\alpha _2\,n-(2\,n+1)\,\alpha _5+(2\,n+1)\,(\sqrt{\alpha _9} +\alpha _3\,\sqrt{\alpha _8})+n\,(n-1)\,\alpha _3+\alpha _7\nonumber \\&\quad +2\,\alpha _3\,\alpha _8+2\,\sqrt{\alpha _8\,\alpha _9}=0. \end{aligned}$$
(B.3)

The parameters \(\alpha _4,\ldots ,\alpha _{13}\) are obtained from the six parameters \(\alpha _1,\ldots ,\alpha _3\) and \(\xi _1,\ldots ,\xi _3\) as follows:

$$\begin{aligned} \alpha _4= & {} \frac{1}{2}\,(1-\alpha _1),\quad \alpha _5=\frac{1}{2}\, (\alpha _2-2\,\alpha _3),\nonumber \\ \alpha _6= & {} \alpha ^2_{5}+\xi _1,\quad \alpha _7=2\,\alpha _4\,\alpha _{5} -\xi _2,\nonumber \\ \alpha _8= & {} \alpha ^2_{4}+\xi _3,\quad \alpha _9=\alpha _6+\alpha _3\, \alpha _7+\alpha ^{2}_3\,\alpha _8,\nonumber \\ \alpha _{10}= & {} \alpha _1+2\,\alpha _4+2\,\sqrt{\alpha _8},\quad \alpha _{11}=\alpha _2-2\,\alpha _5+2\,(\sqrt{\alpha _9}+\alpha _3\, \sqrt{\alpha _8}),\nonumber \\ \alpha _{12}= & {} \alpha _4+\sqrt{\alpha _8},\quad \alpha _{13}=\alpha _5 -(\sqrt{\alpha _9}+\alpha _3\,\sqrt{\alpha _8}). \end{aligned}$$
(B.4)

A special case where \(\alpha _3=0\), as in our case, we find

$$\begin{aligned} \lim _{\alpha _3\rightarrow 0} P^{(\alpha _{10}-1,\frac{\alpha _{11}}{\alpha _3}-\alpha _{10}-1)}_{n}\,(1-2\,\alpha _3\,s)=L^{\alpha _{10}-1}_{n} (\alpha _{11}\,s), \end{aligned}$$
(B.5)

and

$$\begin{aligned} \lim _{\alpha _3\rightarrow 0} (1-\alpha _3\,s)^{-\alpha _{12} -\frac{\alpha _{13}}{\alpha _3}}=e^{\alpha _{13}\,s}. \end{aligned}$$
(B.6)

Therefore the wave-function from (B.2) becomes

$$\begin{aligned} \psi (s)=s^{\alpha _{12}}\,e^{\alpha _{13}\,s}\,L^{\alpha _{10}-1}_{n} (\alpha _{11}\,s), \end{aligned}$$
(B.7)

where \(L^{(\alpha )}_{n} (x)\) denotes the generalized Laguerre polynomial.

The energy eigenvalues equation reduces to

$$\begin{aligned} n\,\alpha _2-(2\,n+1)\,\alpha _5+(2\,n+1)\,\sqrt{\alpha _9}+\alpha _7 +2\,\sqrt{\alpha _8\,\alpha _9}=0. \end{aligned}$$
(B.8)

Few Laguerre polynomial are

$$\begin{aligned}&L^{(\alpha )}_{0} (x)=1\nonumber \\&L^{(\alpha )}_{1} (x)=1+\alpha -x\nonumber \\&L^{(\alpha )}_{2} (x)=\frac{x^2}{2}-(\alpha +2)\,x+\frac{1}{2}\, (\alpha +1)(\alpha +2)\nonumber \\&L^{(\alpha )}_{3} (x)=-\frac{x^3}{6}+\frac{1}{2}\,(\alpha +3)\, x^3-\frac{1}{2}\,(\alpha +2)(\alpha +3)\,x+\frac{1}{2}\,(\alpha +1) (\alpha +2)(\alpha +3).\nonumber \\ \end{aligned}$$
(B.9)

Noted that the simple Laguerre polynomial is the special case \(\alpha =0\) of the generalized Laguerre polynomila:

$$\begin{aligned} L^{(0)}_{n} (x)=L_{n} (x). \end{aligned}$$
(B.10)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, F. The generalized Klein–Gordon oscillator with Coulomb-type potential in (1+2)-dimensions Gürses space–time. Gen Relativ Gravit 51, 69 (2019). https://doi.org/10.1007/s10714-019-2552-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2552-z

Keywords

Navigation