Skip to main content
Log in

Statistical properties of the one-dimensional Dirac oscillator in Rindler space–time

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the spin-\(1/2\) relativistic fermions influenced by the Dirac oscillator in Rindler’s space–time. The energy eigenvalues of this oscillator enable us to calculate the thermodynamic properties of this oscillator by using the Hurwitz zeta function via the Mellin transformation. The effect of the geometry of space–time on these properties is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. W.-Y. Tsai and A. Yildiz, “Motion of charged particles in a homogeneous magnetic field,” Phys. Rev. D., 4, 3643–3648 (1971); T. Goldman and W.-Y. Tsai, “Motion of charged particles in a homogeneous magnetic field. II,” 3648–3651.

    Article  ADS  Google Scholar 

  2. L. D. Krase, Pao Lu, and R. H. Good, Jr., “Stationary states of a spin-1 particle in a constant magnetic field,” Phys. Rev. D., 3, 1275–1279 (1971).

    Article  ADS  Google Scholar 

  3. D. Itô, K. Mori, and E. Carriere, “An example of dynamical systems with linear trajectory,” Nuovo Cim. A, 51, 1119–1121 (1967).

    Article  ADS  Google Scholar 

  4. M. Moshinsky and A. Szczepaniak, “The Dirac oscillator,” J. Phys. A: Math. Gen., 22, L817–L819 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  5. C. Quesne and M. Moshinsky, “Symmetry Lie algebra of the Dirac oscillator,” J. Phys. A: Math. Gen, 23, 2263–2272 (1990).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. R. P. Martínez-y-Romero and A. L. Salas-Brito, “Conformal invariance in a Dirac oscillator,” J. Math. Phys., 33, 1831–1836 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  7. M. Moreno and A. Zentella, “Covariance, CPT and the Foldy–Wouthuysen transformation for the Dirac oscillator,” J. Phys. A: Math. Gen., 22, L821–L825 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  8. W. Rindler, Essential Relativity: Special, General, and Cosmological, Springer, Berlin (1977).

    Book  MATH  Google Scholar 

  9. W. Rindler, “General Relativity” (book review), Science, 230, 1268–1269 (1985).

    Article  Google Scholar 

  10. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields, Pergamon Press, Oxford–London (1962).

    Google Scholar 

  11. L. Parker, “One-electron atom in curved space–time,” Phys. Rev. Lett., 44, 1559–1562 (1980); “One-electron atom as a probe of spacetime curvature,” Phys. Rev. D, 22, 1922–1934 (1980); “Self-forces and atoms in gravitational fields,” 24, 535–537 (1981); “The atom as a probe of curved space–time,” Gen. Relat. Gravit., 13, 307–311 (1981).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. L. C. N. Santos and C. C. Barros, Jr., “Dirac equation and the Melvin metric,” Eur. Phys. J. C, 76, 560, 7 pp. (2016); “Scalar bosons under the influence of noninertial effects in the cosmic string spacetime,” 77, 186, 7 pp. (2017).

    Article  ADS  Google Scholar 

  13. M. H Pacheco, R. R Landim, and C. A. S. Almeida, “One-dimensional Dirac oscillator in a thermal bath,” Phys. Lett. A, 311, 93–96 (2003).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. M.-A. Dariescu and C. Dariescu, “Persistent currents and critical magnetic field in planar dynamics of charged bosons,” J. Phys.: Condens. Matter, 19, 256203, 9 pp. (2007).

    ADS  Google Scholar 

  15. M.-A. Dariescu and C. Dariescu, “Finite temperature analysis of quantum Hall-type behavior of charged bosons,” Chaos Solitons Fractals, 33, 776–781 (2007).

    Article  MATH  ADS  Google Scholar 

  16. A. Boumali, “The one-dimensional thermal properties for the relativistic harmonic oscillators,” Electronic J. Theor. Phys., 12, 121–130 (2015); arXiv: 1409.6205.

    Google Scholar 

  17. E. Elizalde, S. D. Odintsov, A. Romeo, A. A. Bytsenko, and S. Zerbini, Zeta Regularization Techniques with Applications, World Sci., Singapore (1994); E. Elizalde, Ten Physical Applications of Spectral Zeta Functions (Lecture Notes in Physics, Vol. 855), Springer, Berlin (2012).

    Book  MATH  Google Scholar 

  18. L. C. N. Santos, C. E. Mota, C. C. Barros, Jr., L. B. Castro, and V. B. Bezerra, “Quantum dynamics of scalar particles in the space–time of a cosmic string in the context of gravity’s rainbow,” Ann. Physics, 421, 168276, 14 pp. (2020).

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Szmytkowski and M. Gruchowski, “Completeness of the Dirac oscillator eigenfunctions,” J. Phys. A: Math. Gen., 34, 4991–4997 (2001).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. A. Boumali and T. I. Rouabhia, “The thermal properties of the one-dimensional boson particles in Rindler spacetime,” Phys. Lett. A, 385, 126985, 8 pp. (2021).

    Article  MathSciNet  MATH  Google Scholar 

  21. V. Mukhanov and S. Winitzk, Introduction to Quantum Effects in Gravity, Cambridge Univ. Press, Cambridge (2007).

    Book  Google Scholar 

  22. M. Nakahara, Geometry, Topology and Physics (Graduate Student Series in Physics), Institute of Physics, Bristol (2003).

    MATH  Google Scholar 

  23. R. A. Bertlmann, Anomalies in Quantum Field Theory (International Series of Monographs on Physics), Oxford Univ. Press, New York (2000).

    Book  MATH  Google Scholar 

  24. S. K. Moayedi and F. Darabi, “Exact solutions of Dirac equation on a 2D gravitational background,” Phys. Lett. A, 322, 173–178 (2004).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. R. Jackiw and C. Rebbi, “Solitons with fermion number \(1/2\),” Phys. Rev. D, 13, 3398–3409 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  26. L. C. N. Santos and C. C. Barros, “Fermions in the Rindler spacetime,” Internat. J. Geom. Methods Modern Phys., 16, 1950140, 10 pp. (2019).

    Article  MathSciNet  ADS  Google Scholar 

  27. S. Flügge, “Practical Quantum Mechanics,” (book reviews), Amer. J. Phys., 41, 140 (1973).

    Article  ADS  Google Scholar 

  28. S. Flügge, Practical Quantum Mechanics (Classics in Mathematics), Springer, Berlin–Heidelberg (2012).

    MATH  Google Scholar 

  29. J. Carvalho, C. Furtado, and F. Moraes, “Dirac oscillator interacting with a topological defect,” Phys. Rev. A, 84, 032109, 6 pp. (2011).

    Article  ADS  Google Scholar 

  30. A. Boumali and N. Messai, “Klein–Gordon oscillator under a uniform magnetic field in cosmic string space-time,” Can. J. Phys., 92, 1460–1463 (2014).

    Article  ADS  Google Scholar 

  31. A. Boumali, A. Hafdallah, and A. Toumi, “Comment on ‘Energy profile of the one-dimensional Klein–Gordon oscillator’ ,” Phys. Scr., 84, 037001, 3 pp. (2011).

    Article  MATH  ADS  Google Scholar 

  32. A. M. Frassino, D. Marinelli, O. Panella, and P. Roy, “Thermodynamics of quantum phase transitions of a Dirac oscillator in a homogenous magnetic field,” J. Phys. A: Math. Theor, 53, 185204, 19 pp. (2020).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. A. Boumali, F. Serdouk, and S. Dilmi, “Superstatistical properties of the one-dimensional Dirac oscillator,” Phys. A, 533, 124207, 13 pp. (2020).

    Article  MathSciNet  MATH  Google Scholar 

  34. J. D. Castano-Yepes, I. A. Lujan-Cabrera, and C. F. Ramirez-Gutierrez, “Comments on superstatistical properties of the one-dimensional Dirac oscillator by Abdelmalek Boumali et al.,” Phys. A, 580, 125206, 7 pp. (2021).

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Moreno, R. Martínez, and A. Zentella, “Supersymmetry, Foldy–Wouthuysen transformation and stability of the Dirac sea,” Modern Phys. Lett. A., 5, 949–954 (1990).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. L. L. Foldy and S. A. Wouthuysen, “On the Dirac theory of spin 1/2 particles and its non- relativistic limit,” Phys. Rev., 78, 29–36 (1950).

    Article  MATH  ADS  Google Scholar 

  37. N. M. Myers, O. Abah, and S. Deffner, “Quantum Otto engines at relativistic energies,” New. J. Phys., 23, 105001, 16 pp. (2021).

    Article  MathSciNet  ADS  Google Scholar 

  38. A. Boumali and H. Hassanabadi, “The thermal properties of a two-dimensional Dirac oscillator under an external magnetic field,” Eur. Phys. J. Plus, 128, 124, 18 pp. (2013).

    Article  Google Scholar 

Download references

Acknowledgments

The authors express our gratitude to the referee for their careful review of our manuscript and the valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Boumali.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 217, pp. 220–232 https://doi.org/10.4213/tmf10440.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouabhia, T.I., Boumali, A. Statistical properties of the one-dimensional Dirac oscillator in Rindler space–time. Theor Math Phys 217, 1609–1619 (2023). https://doi.org/10.1134/S0040577923100124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923100124

Keywords

Navigation