Skip to main content
Log in

Pv criticality in the extended phase space of a noncommutative geometry inspired Reissner–Nordström black hole in AdS space-time

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The Pv criticality and phase transition in the extended phase space of a noncommutative geometry inspired Reissner–Nordström (RN) black hole in Anti-de Sitter (AdS) space-time are studied, where the cosmological constant appears as a dynamical pressure and its conjugate quantity is thermodynamic volume of the black hole. It is found that the Pv criticality and the small black hole/large black hole phase transition appear for the noncommutative RN-AdS black hole. Numerical calculations indicate that the noncommutative parameter affects the phase transition as well as the critical temperature, horizon radius, pressure and ratio. The critical ratio is no longer universal, which is different from the result in the van de Waals liquid–gas system. The nature of phase transition at the critical point is also discussed. Especially, for the noncommutative geometry inspired RN-AdS black hole, a new thermodynamic quantity \(\varPsi \) conjugate to the noncommutative parameter \(\theta \) has to be defined further, which is required for consistency of both the first law of thermodynamics and the corresponding Smarr relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. When the variation of \(\varLambda \) is included in the first law, the black hole mass M should be identified with enthalpy rather than with internal energy [21,22,23,24,25].

  2. (16) can be derived from a scaling (dimensional) argument [21]. In particular, it should be emphasized that, since \(\theta \) ia a dimensionful parameter, the corresponding term will inevitably appear in the Smarr relation.

  3. The reverse isoperimetric inequality is [25]

    figure a

    where V is the thermodynamic volume of AdS black hole in d space-time dimensions, A is the horizon area of the black hole and \(\mathcal {A}_{d-2}\) is the volume of the unit \((d-2)\)-sphere, i.e.,

    figure b

    When \(d=4\), (22) reduces to

    figure c

    It is easy to check (24) holds for the noncommutative geometry inspired RN-AdS black hole.

References

  1. Hawking, S.W.: Phys. Rev. D 72, 084013 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  2. Nicolini, P., Smailagic, A., Spallucci, E.: Phys. Lett. B 632, 547 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  3. Ansoldi, S., et al.: Phys. Lett. B 645, 261 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  4. Modestic, L., Nicolini, P.: Phys. Rev. D 82, 104035 (2010)

    Article  ADS  Google Scholar 

  5. Rizzo, T.G.: JHEP 09, 021 (2006)

    Article  ADS  Google Scholar 

  6. Spallucci, E., Nicolini, P., Smailagic, A.: Phys. Lett. B 670, 449 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. Nozari, K., Mehdipour, S.H.: Class. Quantum Gravity 25, 175015 (2008)

    Article  ADS  Google Scholar 

  8. Nozari, K., Mehdipour, S.H.: JHEP 03, 061 (2009)

    Article  ADS  Google Scholar 

  9. Mehdipour, S.H.: Mod. Phys. Lett. A 25, 5543 (2010)

    Article  Google Scholar 

  10. Mehdipour, S.H.: Phys. Rev. D 81, 124049 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  11. Giri, P.R.: Int. J. Mod. Phys. A 22, 2047 (2007)

    Article  ADS  Google Scholar 

  12. Ding, C., Kang, S., Chen, C.Y.: Phys. Rev. D 83, 084005 (2011)

    Article  ADS  Google Scholar 

  13. Ding, C., Jing, J.: JHEP 10, 052 (2011)

    Article  ADS  Google Scholar 

  14. Myung, Y.S., Kim, Y.W., Park, Y.J.: JHEP 02, 012 (2007)

    Article  ADS  Google Scholar 

  15. Banerjee, R., Majhi, B.R., Samanta, S.: Phys. Rev. D 77, 124035 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. Myung, Y.S., Yoon, M.: Eur. Phys. J. C 62, 405 (2009)

    Article  ADS  Google Scholar 

  17. Nicolini, P., Torrieri, G.: JHEP 08, 097 (2011)

    Article  ADS  Google Scholar 

  18. Tejeiro, J.M., Larranage, A.: Pramana. J. Phys. 78, 1 (2012)

    Google Scholar 

  19. Liang, J., Liu, B.: Europhys. Lett. 100, 30001 (2012)

    Article  ADS  Google Scholar 

  20. Nicolini, P.: Int. J. Mod. Phys. A 24, 1229 (2009)

    Article  ADS  Google Scholar 

  21. Kastor, D., Ray, S., Traschen, J.: Class. Quantum Gravity 26, 195011 (2009)

    Article  ADS  Google Scholar 

  22. Dolan, B.P.: Class. Quantum Gravity 28, 125020 (2011)

    Article  ADS  Google Scholar 

  23. Dolan, B.P.: Class. Quantum Gravity 28, 235017 (2011)

    Article  ADS  Google Scholar 

  24. Dolan, B.P.: Phys. Rev. D 84, 127503 (2011)

    Article  ADS  Google Scholar 

  25. Cvetič, M., et al.: Phys. Rev. D 84, 024037 (2011)

    Article  ADS  Google Scholar 

  26. Kubizňák, D., Mann, R.B.: JHEP 07, 033 (2012)

    Article  ADS  Google Scholar 

  27. Gunasekaran, S., Mann, R.B., Kubizňák, D.: JHEP 11, 110 (2012)

    Article  ADS  Google Scholar 

  28. Belhaj, A., et al.: Chin. Phys. Lett. 29, 100401 (2012)

    Article  ADS  Google Scholar 

  29. Cai, R.G., et al.: JHEP 09, 005 (2012)

    ADS  Google Scholar 

  30. Hendi, S.H., Vahidinia, M.H.: Phys. Rev. D 88, 084045 (2013)

    Article  ADS  Google Scholar 

  31. Chen, S., et al.: Chin. Phys. Lett. 30, 061401 (2013)

    Google Scholar 

  32. Zhao, R., et al.: Eur. Phys. J. C 73, 2645 (2013)

    Article  ADS  Google Scholar 

  33. Altamirano, N., Kubizňák, D., Mann, R.B.: Phys. Rev. D 88, 101502 (2013)

    Article  ADS  Google Scholar 

  34. Mo, J.X., Liu, W.B.: Phys. Lett. B 727, 336 (2013)

    Article  ADS  Google Scholar 

  35. Spallucci, E., Smailagic, A.: Phys. Lett. B 723, 436 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  36. Spallucci, E., Smailagic, A.J.: J. Gravity 2013, 525696 (2013)

    Article  Google Scholar 

  37. Altamirano, N., et al.: Galaxies 2, 89 (2014)

    Article  ADS  Google Scholar 

  38. Altamirano, N., et al.: Class. Quantum Gravity 31, 042001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  39. Wei, S.W., Liu, Y.X.: Phys. Rev. D 90, 044057 (2014)

    Article  ADS  Google Scholar 

  40. Xu, W., Xu, H., Zhao, L.: Eur. Phys. J. C 74, 2970 (2014)

    Article  ADS  Google Scholar 

  41. Zou, C.D., Zhang, S.J., Wang, B.: Phys. Rev. D 89, 044002 (2014)

    Article  ADS  Google Scholar 

  42. Mo, J.X., Liu, W.B.: Eur. Phys. J. C 74, 2836 (2014)

    Article  ADS  Google Scholar 

  43. Zhang, L.C., et al.: Eur. Phys. J. C 74, 3052 (2014)

    Article  ADS  Google Scholar 

  44. Mo, J.X., Liu, W.B.: Phys. Rev. D 89, 084057 (2014)

    Article  ADS  Google Scholar 

  45. Zou, C.D., Liu, Y., Wang, B.: Phys. Rev. D 90, 044063 (2014)

    Article  ADS  Google Scholar 

  46. Zhao, Z., Jing, J.: JHEP 11, 037 (2014)

    Article  ADS  Google Scholar 

  47. Zhao, R., et al.: Adv. High Energy Phys. 2014, 124854 (2014)

    Google Scholar 

  48. Xu, H., Xu, W., Zhao, L.: Eur. Phys. J. C 74, 3074 (2014)

    Article  ADS  Google Scholar 

  49. Frassino, A.M., et al.: JHEP 09, 080 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  50. Li, G.Q.: Phys. Lett. B 735, 256 (2014)

    Article  ADS  Google Scholar 

  51. Dolan, B.P., et al.: Class. Quantum Gravity 31, 242001 (2014)

    Article  ADS  Google Scholar 

  52. Zhang, J.L., Cai, R.G., Yu, H.: JHEP 02, 143 (2015)

    Article  ADS  Google Scholar 

  53. Mirza, B., Sherkatghanad, Z.: Phys. Rev. D 90, 084006 (2014)

    Article  ADS  Google Scholar 

  54. Rajagopal, A., Kubizňák, D., Mann, R.B.: Phys. Lett. B 737, 277 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  55. Liu, Y., Zou, C.D., Wang, B.: JHEP 09, 179 (2014)

    Article  ADS  Google Scholar 

  56. Dolan, B.P.: Phys. Rev. D 90, 084002 (2014)

    Article  ADS  Google Scholar 

  57. Wei, S.W., Liu, Y.X.: Phys. Rev. D 91, 044018 (2015)

    Article  ADS  Google Scholar 

  58. Belhaj, A., et al.: JHEP 05, 149 (2015)

    Article  ADS  Google Scholar 

  59. Dehghani, M.H., Kamrani, S., Sheykhi, A.: Phys. Rev. D 90, 104020 (2014)

    Article  ADS  Google Scholar 

  60. Hennigar, R.A., Brenna, W.G., Mann, R.B.: JHEP 07, 077 (2015)

    Article  ADS  Google Scholar 

  61. Xu, J., Cao, L.M., Hu, Y.P.: Phys. Rev. D 91, 124033 (2015)

    Article  ADS  Google Scholar 

  62. Liang, J., Sun, C.B., Feng, H.T.: Europhys. Lett. 113, 30008 (2016)

    Article  ADS  Google Scholar 

  63. Wang, Z.C.: Thermodynamics Statistical Physics. Higher Education Press, Beijing (2003)

    Google Scholar 

  64. Lala, A., Roychowdhury, D.: Phys. Rev. D 86, 084027 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Education Department of the Shannxi Provincial Government under Grant No. 15JK1077 and the Doctorial Scientific Research Starting Fund of Shannxi University of Science and Technology under Grant No. BJ12-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Guan, ZH., Liu, YC. et al. Pv criticality in the extended phase space of a noncommutative geometry inspired Reissner–Nordström black hole in AdS space-time. Gen Relativ Gravit 49, 29 (2017). https://doi.org/10.1007/s10714-017-2189-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-017-2189-8

Keywords

Navigation