Skip to main content
Log in

Probing spacetime noncommutative constant via charged astrophysical black hole lensing

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the influence of the spacetime noncommutative parameter on the strong field gravitational lensing in the noncommutative Reissner-Nordström black-hole spacetime. Supposing that the gravitational field of the supermassive central object of the Galaxy is described by this metric, we estimate the numerical values of the coefficients and observables for strong gravitational lensing. Our results show that with the increase of the parameter \( \sqrt {\vartheta } \), the observables θ and r m decrease, while s increases. Our results also show that i) if \( \sqrt {\vartheta } \) is strong, the observables are close to those of the noncommutative Schwarzschild black hole lensing; ii) if \( \sqrt {\vartheta } \) is weak, the observables are close to those of the commutative Reissner-Nordström black hole lensing; iii) the detectable scope of ϑ in a noncommutative Reissner-Nordström black hole lensing is \( 0.12 \leq \sqrt {\vartheta } \leq 0.26 \), which is wider than that in a noncommutative Schwarzschild black hole lensing, \( 0.18 \leq \sqrt {\vartheta } \leq 0.26 \). This may offer a way to probe the spacetime noncommutative constant ϑ by the astronomical instruments in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Garattini and P. Nicolini, A noncommutative approach to the cosmological constant problem, Phys. Rev. D 83 (2011) 064021 [arXiv:1006.5418] [SPIRES].

    ADS  Google Scholar 

  2. N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. E. Witten, Bound states of strings and p-branes, Nucl. Phys. B 460 (1996) 335 [hep-th/9510135] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. J. Bellissard, A. van Elst and H. Schulz-Baldes, The non-commutative geometry of the quantum Hall effect, J. Math. Phys. 35 (1994) 5373 [cond-mat/9411052].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. J. Gamboa, M. Loewe, F. Mendez and J.C. Rojas, Estimating noncommutative effects from the quantum Hall effect, Mod. Phys. Lett. A 16 (2001) 2075 [hep-th/0104224] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. J. Gamboa, M. Loewe and J.C. Rojas, Non-commutative quantum mechanics, Phys. Rev. D 64 (2001) 067901 [hep-th/0010220] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. P.A. Horvathy, The non-commutative Landau problem and the Peierls substitution, Ann. Phys. 299 (2002) 128 [hep-th/0201007] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. M. Marcolli and E. Pierpaoli, Early universe models from noncommutative geometry, arXiv:0908.3683 [SPIRES].

  9. W.T. Kim and J.J. Oh, Noncommutative open strings from Dirac quantization, Mod. Phys. Lett. A 15 (2000) 1597 [hep-th/9911085] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. R. Jackiw, Physical instances of noncommuting coordinates, Nucl. Phys. Proc. Suppl. 108 (2002) 30 [hep-th/0110057] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. R. Jackiw, Physical instances of noncommuting coordinates, Nucl. Phys. Proc. Suppl. 108 (2002) 30 [Phys. Part. Nucl. 33 (2002) S6] [hep-th/0110057] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. L. Landau, The theory of superfluidity of helium II, Zh. Eksp. Teor. Fiz. 11 (1941) 592, [J. Phys. USSR, 5 (1941) 71].

    Google Scholar 

  13. S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Ann. Phys. 140 (1982) 372 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. H.S. Snyder, Quantized space-time, Phys. Rev. 71 (1947) 38 [SPIRES].

    Article  ADS  MATH  Google Scholar 

  15. H.S. Snyder, The electromagnetic field in quantized space-time, Phys. Rev. 72 (1947) 68 [SPIRES].

    Article  ADS  MATH  Google Scholar 

  16. C.N. Yang, On quantized space-time, Phys. Rev. 72 (1947) 874 [SPIRES].

    Article  ADS  MATH  Google Scholar 

  17. A. Connes, Noncommutative geometry, Academic Press, New York U.S.A. (1994).

    MATH  Google Scholar 

  18. A. Connes and M. Marcolli, A walk in the noncommutative garden, math/0601054.

  19. E. Akofor, Quantum theory, noncommutativity and heuristics, arXiv:1012.5133 [SPIRES].

  20. A. Smailagic and E. Spallucci, Feynman path integral on the noncommutative plane, J. Phys. A 36 (2003) L467 [hep-th/0307217] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  21. A. Smailagic and E. Spallucci, UV divergence-free QFT on noncommutative plane, J. Phys. A 36 (2003) L517 [hep-th/0308193] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. S. Ansoldi, P. Nicolini, A. Smailagic and E. Spallucci, Noncommutative geometry inspired charged black holes, Phys. Lett. B 645 (2007) 261 [gr-qc/0612035] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  23. J. Gomis and T. Mehen, Space-time noncommutative field theories and unitarity, Nucl. Phys. B 591 (2000) 265 [hep-th/0005129] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. K. Morita, Y. Okumura and E. Umezawa, Lorentz invariance and unitarity problem in non-commutative field theory, Prog. Theor. Phys. 110 (2003) 989 [hep-th/0309155] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. P. Fischer and V. Putz, No UV/IR mixing in unitary space-time noncommutative field theory, Eur. Phys. J. C 32 (2004) 269 [hep-th/0306099] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. Y. Liao and K. Sibold, Time-ordered perturbation theory on noncommutative spacetime. II. Unitarity, Eur. Phys. J. C 25 (2002) 479 [hep-th/0206011] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. T. Ohl, R. Ruckl and J. Zeiner, Unitarity of time-like noncommutative gauge theories: The violation of Ward identities in time-ordered perturbation theory, Nucl. Phys. B 676 (2004) 229 [hep-th/0309021] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Smailagic and E. Spallucci, Lorentz invariance and unitarity in UV-finiteness of QFT on noncommutative spacetime, J. Phys. A 37 (2004) 1 [hep-th/0406174] [SPIRES].

    MathSciNet  Google Scholar 

  29. P. Nicolini, Noncommutative black holes, the final appeal to quantum gravity: a review, Int. J. Mod. Phys. A 24 (2009) 1229 [arXiv:0807.1939] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  30. S. Ansoldi, P. Nicolini, A. Smailagic and E. Spallucci, Noncommutative geometry inspired charged black holes, Phys. Lett. B 645 (2007) 261 [gr-qc/0612035] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  31. P. Nicolini and E. Spallucci, Noncommutative geometry inspired wormholes and dirty black holes, Class. Quant. Grav. 27 (2010) 015010.

    Article  MathSciNet  ADS  Google Scholar 

  32. A. Smailagic and E. Spallucci, ’Kerrr’ black hole: the Lord of the string, Phys. Lett. B 688 (2010) 82 [arXiv:1003.3918] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  33. L. Modesto and P. Nicolini, Charged rotating noncommutative black holes, Phys. Rev. D 82 (2010) 104035 [arXiv:1005.5605] [SPIRES].

    ADS  Google Scholar 

  34. E. Spallucci, A. Smailagic and P. Nicolini, Pair creation by higher dimensional, regular, charged, micro black holes, Phys. Lett. B 670 (2009) 449 [arXiv:0801.3519] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  35. K. Nozari and S.H. Mehdipour, Hawking radiation as quantum tunneling from noncommutative Schwarzschild black hole, Class. Quant. Grav. 25 (2008) 175015.

    Article  MathSciNet  ADS  Google Scholar 

  36. W. Kim, E.J. Son and M. Yoon, Thermodynamic similarity between the noncommutative Schwarzschild black hole and the Reissner-Nordström black hole, JHEP 04 (2008) 042 [arXiv:0802.1757] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. B. Vakili, N. Khosravi and H.R. Sepangi, Thermodynamics of noncommutative de Sitter spacetime, Int. J. Mod. Phys. D 18 (2009) 159 [arXiv:0804.4326] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. M. Burić and J. Madore, Spherically symmetric noncommutative space: D = 4, Eur. Phys. J. C 58 (2008) 347 [arXiv:0807.0960] [SPIRES].

    ADS  Google Scholar 

  39. W.-H. Huang and K.-W. Huang, Thermodynamics on noncommutative geometry in coherent state formalism, Phys. Lett. B 670 (2009) 416 [arXiv:0808.0324] [SPIRES].

    ADS  Google Scholar 

  40. M.-I. Park, Smeared hair and black holes in three-dimensional de Sitter spacetime, Phys. Rev. D 80 (2009) 084026 [arXiv:0811.2685] [SPIRES].

    ADS  Google Scholar 

  41. K. Nozari and S.H. Mehdipour, Parikh-Wilczek tunneling from noncommutative higher dimensional black holes, JHEP 03 (2009) 061 [arXiv:0902.1945] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. J.J. Oh and C. Park, Gravitational collapse of the shells with the smeared gravitational source in noncommutative geometry, JHEP 03 (2010) 086 [arXiv:0906.4428] [SPIRES].

    Article  ADS  Google Scholar 

  43. I. Arraut, D. Batic and M. Nowakowski, Maximal extension of the Schwarzschild spacetime inspired by noncommutative geometry, J. Math. Phys. 51 (2010) 022503 [arXiv:1001.2226] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. H. Garcia-Compean and C. Soto-Campos, Noncommutative effects in the black hole evaporation in two dimensions, Phys. Rev. D 74 (2006) 104028 [hep-th/0607071] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  45. E. Di Grezia, G. Esposito and G. Miele, Gravitational amplitudes in black-hole evaporation: The effect of non-commutative geometry, Class. Quant. Grav. 23 (2006) 6425 [hep-th/0607157] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  46. E. Di Grezia, G. Esposito and G. Miele, Black hole evaporation in a spherically symmetric non-commutative space-time, J. Phys. A 41 (2008) 164063 [arXiv:0707.3318] [SPIRES].

    ADS  Google Scholar 

  47. Y.S. Myung, Y.-W. Kim and Y.-J. Park, Thermodynamics and evaporation of the noncommutative black hole, JHEP 02 (2007) 012 [gr-qc/0611130] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. R. Casadio and P. Nicolini, The decay-time of non-commutative micro-black holes, JHEP 11 (2008) 072 [arXiv:0809.2471] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. Y.-G. Miao, Z. Xue and S.-J. Zhang, Quantum tunneling and spectroscopy of noncommutative Kerr black hole, arXiv:1102.0074 [SPIRES].

  50. S.-W. Wei, Y.-X. Liu, Z.-H. Zhao and C.-E. Fu, Area spectrum of Schwarzschild black hole inspired by noncommutative geometry, arXiv:1004.2005 [SPIRES].

  51. R.B. Mann and P. Nicolini, Cosmological production of noncommutative black holes, Phys. Rev. D 84 (2011) 064014 [arXiv:1102.5096] [SPIRES].

    ADS  Google Scholar 

  52. J.W. Moffat, Ultraviolet Complete Quantum Gravity, Eur. Phys. J. Plus 126 (2011) 43 [arXiv:1008.2482] [SPIRES].

    Article  Google Scholar 

  53. D.M. Gingrich, Noncommutative geometry inspired black holes in higher dimensions at the LHC, JHEP 05 (2010) 022 [arXiv:1003.1798] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  54. M. Bleicher and P. Nicolini, Large extra dimensions and small black holes at the LHC, J. Phys. Conf. Ser. 237 (2010) 012008 [arXiv:1001.2211] [SPIRES].

    Article  ADS  Google Scholar 

  55. O. Bertolami and C.A.D. Zarro, Towards a noncommutative astrophysics, Phys. Rev. D 81 (2010) 025005 [arXiv:0908.4196] [SPIRES].

    ADS  Google Scholar 

  56. C. Ding, S. Kang, C.-Y. Chen, S. Chen and J. Jing, Strong gravitational lensing in a noncommutative black-hole spacetime, Phys. Rev. D 83 (2011) 084005 [arXiv:1012.1670] [SPIRES].

    ADS  Google Scholar 

  57. J. Wambsganss, Gravitational lensing in astronomy, Liv. Rev. Rel. (1998) 1 [www.livingreviews.org/Articles/Volume1/1998-12wamb].

  58. P. Schneider, J. Ehlers and E.E. Falco, Gravitational lenses, Springer, Berlin Germany (1992).

    Book  Google Scholar 

  59. H. Hoekstra and B. Jain, Weak Gravitational Lensing and its Cosmological Applications, Ann. Rev. Nucl. Part. Sci. 58 (2008) 99 [arXiv:0805.0139] [SPIRES].

    Article  ADS  Google Scholar 

  60. C. Darwin, The gravity field of a particle, Proc. R. Soc. London 249 (1959) 180.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. K.S. Virbhadra, D. Narasimha and S.M. Chitre, Role of the scalar field in gravitational lensing, Astron. Astrophys. 337 (1998) 1 [astro-ph/9801174] [SPIRES].

    ADS  Google Scholar 

  62. K.S. Virbhadra and G.F.R. Ellis, Schwarzschild black hole lensing, Phys. Rev. D 62 (2000) 084003 [astro-ph/9904193] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  63. C.-M. Claudel, K.S. Virbhadra and G.F.R. Ellis, The geometry of photon surfaces, J. Math. Phys. 42 (2001) 818 [gr-qc/0005050] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. K.S. Virbhadra and G.F.R. Ellis, Gravitational lensing by naked singularities, Phys. Rev. D 65 (2002) 103004 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  65. S. Frittelli, T.P. Kling and E.T. Newman, Spacetime perspective of Schwarzschild lensing, Phys. Rev. D 61 (2000) 064021 [gr-qc/0001037] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  66. A. Bhadra, Gravitational lensing by a charged black hole of string theory, Phys. Rev. D 67 (2003) 103009 [gr-qc/0306016] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  67. K. Sarkar and A. Bhadra, Strong field gravitational lensing in the Brans-Dicke theory, Class. Quant. Grav. 23 (2006) 6101 [gr-qc/0602087] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  68. E.F. Eiroa, G.E. Romero and D.F. Torres, Reissner-Nordstrom black hole lensing, Phys. Rev. D 66 (2002) 024010 [gr-qc/0203049] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  69. R.A. Konoplya, Particle motion around magnetized black holes: Preston-Poisson space-time, Phys. Rev. D 74 (2006) 124015 [gr-qc/0610082] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  70. R.A. Konoplya, Magnetized black hole as a gravitational lens, Phys. Lett. B 644 (2007) 219 [gr-qc/0608066] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  71. N. Mukherjee and A.S. Majumdar, Particle motion and gravitational lensing in the metric of a dilaton black hole in a de Sitter universe, Gen. Rel. Grav. 39 (2007) 583 [astro-ph/0605224] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  72. V. Perlick, On the exact gravitational lens equation in spherically symmetric and static spacetimes, Phys. Rev. D 69 (2004) 064017 [gr-qc/0307072] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  73. A.Y. Bin-Nun, Strong gravitational lensing by Sgr A*, Class. Quant. Grav. 28 (2011) 114003.

    Article  MathSciNet  ADS  Google Scholar 

  74. S.-W. Wei, Y.-X. Liu, C.-E. Fu and K. Yang, Strong field limit analysis of gravitational lensing in Kerr-Taub-NUT spacetime, arXiv:1104.0776 [SPIRES].

  75. A.S. Majumdar and N. Mukherjee, Braneworld black holes in cosmology and astrophysics, Int. J. Mod. Phys. D 14 (2005) 1095 [astro-ph/0503473] [SPIRES].

    ADS  Google Scholar 

  76. R. Whisker, Strong gravitational lensing by braneworld black holes, Phys. Rev. D 71 (2005) 064004 [astro-ph/0411786] [SPIRES].

    ADS  Google Scholar 

  77. A.S. Eddington, Internal constitution of the stars, Cambridge University Press, Cambridge U.K. (1926).

    MATH  Google Scholar 

  78. N.K. Glendenning, Compact stars A&A Library, Springer-Verlag, New York U.S.A. (2000).

    Book  Google Scholar 

  79. J. Bally and E.R. Harrison, The electrically polarized universe, Astrophys. J. 220 (1978) 743.

    Article  ADS  Google Scholar 

  80. E. Olson and M. Bailyn, Internal structure of multicomponent static spherical gravitating fluids, Phys. Rev. D 12 (1975) 3030 [SPIRES].

    ADS  Google Scholar 

  81. E. Olson and M. Bailyn, Charge effects in a static, spherically symmetric, gravitating fluid, Phys. Rev. D 13 (1976) 2204 [SPIRES].

    ADS  Google Scholar 

  82. C.R. Ghezzi, Relativistic structure, stability and gravitational collapse of charged neutron stars, Phys. Rev. D 72 (2005) 104017 [gr-qc/0510106] [SPIRES].

    ADS  Google Scholar 

  83. C.R. Ghezzi and P.S. Letelier, Numeric simulation of relativistic stellar core collapse and the formation of Reissner-Nordstrom space-times, Phys. Rev. D 75 (2007) 024020 [astro-ph/0503629] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  84. A.N. Baushev and P. Chardonnet, Electric charge estimation of a new-born black hole, Int. J. Mod. Phys. D 18 (2009) 2035 [arXiv:0905.4071] [SPIRES].

    ADS  Google Scholar 

  85. R. Ruffini, J.D. Salmonson, J.R. Wilson and S.-S. Xue, On the pair electromagnetic pulse of a black hole with electromagnetic structure, Astron. Astrophys. 350 (1999) 334 [astro-ph/9907030] [SPIRES].

    ADS  Google Scholar 

  86. J.A. de Diego, D. Dultzin-Hacyan, J.G. Trejo and D. Núñez, A natural mechanism to induce an electric charge into a black hole, astro-ph/0405237 [SPIRES].

  87. H.J. Mosquera Cuesta, A. Penna-Firme and A. Perez-Lorenzana, Charge asymmetry in brane world, Phys. Rev. D 67 (2003) 087702 [hep-ph/0203010] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  88. S.L. Shapiro and S.A. Teukolsky, White dwarfs, black holes and neutron stars: the physics of compact objects, Wiley, New York U.S.A. (1983).

    Book  Google Scholar 

  89. R. Ruffini, C.L. Bianco, P. Chardonnet, F. Fraschetti and S.S. Xue, On a possible GRB-supernova time sequence, Astrophys. J. 555 (2001) L117 [astro-ph/0106534] [SPIRES].

    Article  ADS  Google Scholar 

  90. V. Bozza, Quasi-equatorial gravitational lensing by spinning black holes in the strong field limit, Phys. Rev. D 67 (2003) 103006 [gr-qc/0210109] [SPIRES].

    ADS  Google Scholar 

  91. V. Bozza, Gravitational lensing in the strong field limit, Phys. Rev. D 66 (2002) 103001 [gr-qc/0208075] [SPIRES].

    ADS  Google Scholar 

  92. S.-b. Chen and J.-l. Jing, Strong field gravitational lensing in the deformed Hǒrava-Lifshitz black hole, Phys. Rev. D 80 (2009) 024036 [arXiv:0905.2055] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  93. V. Bozza, S. Capozziello, G. Iovane and G. Scarpetta, Strong field limit of black hole gravitational lensing, Gen. Rel. Grav. 33 (2001) 1535 [gr-qc/0102068] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  94. D. Richstone et al., Supermassive black holes and the evolution of galaxies, Nature 395 (1998) A14 [astro-ph/9810378] [SPIRES].

    ADS  Google Scholar 

  95. F. Melia and H. Falcke, The supermassive black hole at the galactic center, Ann. Rev. Astron. Astrophys. 39 (2001) 309 [astro-ph/0106162] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chikun Ding.

Additional information

ArXiv ePrint: 1106.1974

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, C., Jing, J. Probing spacetime noncommutative constant via charged astrophysical black hole lensing. J. High Energ. Phys. 2011, 52 (2011). https://doi.org/10.1007/JHEP10(2011)052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)052

Keywords

Navigation