Skip to main content
Log in

Quasi normal modes and P-V criticallity for scalar perturbations in a class of dRGT massive gravity around black holes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We investigate black holes in a class of dRGT massive gravity for their quasi normal modes (QNMs) for neutral and charged ones using Improved Asymptotic Iteration Method and their thermodynamic behavior. The QNMs are studied for different values of the massive parameter \(m_g\) for both neutral and charged dRGT black holes under a massless scalar perturbation. As \(m_g\) increases, the magnitude of the quasi normal frequencies are found to be increasing. The results are also compared with the Schwarzchild de Sitter case. P-V criticallity of the aforesaid black hoels under massles scalar perturbation in the de Sitter space are also studied in this paper. It is found that the thermodynamic behavior of a neutral black hole shows no physically feasible phase transition while a charged black hole shows a definite phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Regge, T., Wheeler, J.A.: Stability of a Schwarzschild singularity. Phys. Rev. 108, 1063 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Zerilli, F.J.: Perturbation analysis for gravitational and electromagnetic radiation in a Reissner-Nordstrm geometry. Phys. Rev. D 9, 860 (1974)

    Article  ADS  Google Scholar 

  3. Vishveswara, C.V.: Scattering of gravitational radiation by a Schwarzschild black-hole. Nature 227, 936–938 (1970)

    Article  ADS  Google Scholar 

  4. Kokkotas, K.G., Schmidt, B.G.: Quasi-normal modes of stars and black holes. Living Rev. Relativ. 2, 2 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Konoplya, R.A., Zhidenko, A.: Quasinormal modes of black holes: from astrophysics to string theory. Rev. Mod. Phys. 83, 793 (2011)

    Article  ADS  Google Scholar 

  6. Andersson, N., Jensen, B.: Scattering by black holes (2001). arXiv:gr-qc/0011025v2

  7. Barakat, T.: The asymptotic iteration method for the eigenenergies of the anharmonic oscillator potential \(V(x)=A x^{2\alpha } +B x^2\). Phys. Lett. A 344(6), 411–417 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Joan, C., John, G.B., Bernard, J.K., van Meter, J.R.: Black-hole binaries, gravitational waves, and numerical relativity. Rev. Mod. Phys. 82, 3069 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Edelstein, L.A., Vishveswara, C.V.: Differential equations for perturbations on the Schwarzschild metric. Phys. Rev. D 1, 3514 (1970)

    Article  ADS  Google Scholar 

  10. Vishveswara, C.V.: Stability of the Schwarzschild metric. Phys. Rev. D 1, 2870 (1970)

    Article  ADS  Google Scholar 

  11. Iyer, S., Will, M.: Black-hole normal modes: a WKB approach. I. Foundations and application of a higher-order WKB analysis of potential-barrier scattering. Phys. Rev. D 35, 3621 (1987)

    Article  ADS  Google Scholar 

  12. Iyer, S.: Black-hole normal modes: a WKB approach. II. Schwarzschild black holes. Phys. Rev. D 35, 3632 (1987)

    Article  ADS  Google Scholar 

  13. Iyer, S., Seidel, M.: Black-hole normal modes: a WKB approach. II. Schwarzschild black holes. Phys. Rev. D 41, 374 (1990)

    Article  ADS  Google Scholar 

  14. Ferrari, V., Mashhoon, B.: New approach to the quasinormal modes of a black hole. Phys. Rev. D 30, 295 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  15. Leaver, E.W.: An analytic representation for the quasi-normal modes of Kerr black holes. Proc. R. Soc. Lond. A 402, 285 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  16. Ciftci, H., Hall, R.L., Saad, N.: Asymptotic iteration method for eigenvalue problems. J. Phys. A Math. Gen. 36, 11807 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Cho, H.T., Cornell, A.S., Jason, D., Wade, N.: Black hole quasinormal modes using the asymptotic iteration method. Class. Quantum Gravity 27, 155004 (2010). arXiv:0912.2740v3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Cho, H.T., Cornell, A.S., Jason, D., Huang, T.R., Wade, N.: A new approach to black hole quasinormal modes: a review of the asymptotic iteration method. Adv. Math. Phys. 2012, 281705 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hawking, S.W., Page, D.N.: Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys. 87, 577–588 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  20. Bekenstein, J.: Generalized second law of thermodynamics in black-hole physics. Phys. Rev. D. 9, 3292 (1974)

    Article  ADS  Google Scholar 

  21. Davies, P.C.W.: Thermodynamics of black holes. Rep. Prog. Phys. 41, 1313–1355 (1978)

    Article  ADS  Google Scholar 

  22. Wald, R.M.: The thermodynamics of black holes. Living Rev. Rel. 4, 6 (2001)

    MATH  Google Scholar 

  23. Hut, P.: Charged black holes and phase transitions. Mon. Not. R. Astron. Soc. 180, 379 (1977)

    Article  ADS  Google Scholar 

  24. Capozziello, S., Francaviglia, M.: Extended theories of gravity and their cosmological and astrophysical applications. Gen. Relativ. Gravit. 40, 357–420 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Sotiriou, T.P., Faraoni, V.: \(f(R)\) theories of gravity. Rev. Mod. Phys. 82, 451–497 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Gupta, S.N.: Gravitation and electromagnetism. Phys. Rev. 96, 1683 (1954)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Weinberg, S.: Photons and gravitons in perturbation theory: derivation of Maxwell’s and Einstein’s equations. Phys. Rev. B 138, 988 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  28. Feynman, R.P., Morinigo, F.B., Wagner, W.G.: Feynman Lectures on Gravitation. Addison-Wesley, Reading, MA (1995)

    Google Scholar 

  29. Mattingly, D.: Modern tests of Lorentz invariance. Living Rev. Rel. 8, 5 (2005)

    MATH  Google Scholar 

  30. Hinterbichler, K.: Theoretical aspects of massive gravity. Rev. Mod. Phys. 84, 671–710 (2012)

    Article  ADS  Google Scholar 

  31. Volkov, M.S.: Self-accelerating cosmologies and hairy black holes in ghost-free bigravity and massive gravity. Class. Quantum Gravity 30, 184009 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Tasinato, G., Koyama, K., Niz, G.: Exact solutions in massive gravity. Class. Quantum Gravity 30, 184002 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Fierz, M., Pauli, W.: On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. R. Soc. Lond. Ser. A 173, 211232 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  34. de Rham, C.: Massive gravity. Living Rev. Rel. 17, 7 (2014)

    MATH  Google Scholar 

  35. Vainshtein, A.I.: To the problem of nonvanishing gravitation mass. Phys. Lett. B 39, 393–394 (1972)

    Article  ADS  Google Scholar 

  36. Boulware, D.G., Deser, S.: Can gravitation have a finite range? Phys. Rev. D 6, 3368 (1972)

    Article  ADS  Google Scholar 

  37. de Rham, C., Gabadadze, G., Tolley, A.J.: Resummation of massive gravity. Phys. Rev. Lett. 106, 231101 (2011)

    Article  ADS  Google Scholar 

  38. de Rham, C., Gabadadze, G.: Unitarity check in gravitational Higgs mechanism. Phys. Rev. D 82, 044020 (2010)

    Article  ADS  Google Scholar 

  39. de Rham, C., Gabadadze, G., Tolley, A.J.: Ghost free massive gravity in the Stuckelberg language. Phys. Lett. B 711, 190 (2012). arXiv:1107.3820 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  40. Babichev, E., Fabbri, A.: A class of charged black hole solutions in massive (bi)gravity. JHEP 07, 016 (2014)

    Article  ADS  Google Scholar 

  41. Ghosh, S.G., Tannukij, L., Wongjun, P.: A class of black holes in dRGT massive gravity and their thermodynamical properties. arXiv:1506.07119v1

  42. Rostami, A.: Asymptotic iteration method: a powerful approach for analysis of inhomogeneous dielectric slab waveguides. Prog. Electromagn. Res. B 4, 171 (2008)

    Article  Google Scholar 

  43. Ciftci, H., Hall, R.L., Saad, N.: Perturbation theory in a framework of iteration methods. Phys. Lett. A 340(5), 388–396 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Berezhiani, L., Chkareuli, G., de Rham, C., Gabadadze, G., Tolley, A.J.: On black holes in massive gravity. Phys. Rev. D 85, 044024 (2012)

    Article  ADS  Google Scholar 

  45. Babichev, E., Brito, R.: Black holes in massive gravity. Class. Quantum Gravity 32, 154001 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Kodama, H., Arraut, I.: Stability of the Schwarzschild-de Sitter black hole in the dRGT massive gravity theory. Prog. Theor. Exp. Phys. 2014, 023E02 (2014)

    Article  MATH  Google Scholar 

  47. Koyama, K., Niz, G., Tasinato, G.: Strong interactions and exact solutions in nonlinear massive gravity. Phys. Rev. D 84, 064033 (2011). arXiv:1104.2143 [hepth]

    Article  ADS  MATH  Google Scholar 

  48. Koyama, K., Niz, G., Tasinato, G.: Analytic solutions in nonlinear massive gravity. Phys. Rev. Lett. 107, 131101 (2011). arXiv:1103.4708 [hep-th]

    Article  ADS  MATH  Google Scholar 

  49. Sbisa, F., Niz, G., Koyama, K., Tasinato, G.: Characterizing vainshtein solutions in massive gravity. Phys. Rev. D 86, 024033 (2012). arXiv:1204.1193 [hep-th]

    Article  ADS  Google Scholar 

  50. Vegh, D.: Holography without translational symmetry. Report No. CERN-PH-TH/2013-357 (2013). arXiv:1301.0537v2

  51. Zerilli, F.J.: Effective potential for even-parity Regge-Wheeler gravitational perturbation equations. Phys. Rev. Lett. 24, 737 (1970)

    Article  ADS  Google Scholar 

  52. Moss, I.G., Norman, J.P.: Gravitational quasinormal modes for Anti-de Sitter black holes. Class. Quantum Gravity 19, 2323–2332 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Naylor W.: Black holes: AIM. http://wade-naylor.com/aim/

  54. Zhidenko, A.: Quasi-normal modes of Schwarzschild de Sitter black holes. Class. Quantum Gravity 21, 273-280 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Zhidenko, A.: Quasi-normal modes of Schwarzschild-de Sitter black holes (2003). arXiv:gr-qc/0307012v4

  56. Zhidenko, A.: Linear perturbations of black holes: stability, quasi-normal modes and tails. Ph.D. Thesis. arXiv:0903.3555v2

  57. Creighton, J.D.E., Mann, R.B.: Quasilocal thermodynamics of dilaton gravity coupled to gauge fields. Phys. Rev. D 52, 4569 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  58. Kstor, D., Ray, S., Traschen, J.: Enthalpy and the mechanics of AdS black holes. Class. Quantum Gravity 26, 195011 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Dolan, B.P.: Pressure and volume in the first law of black hole thermodynamics. Class. Quantum Gravity 28, 235017 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Xu, J., Cao, L., Hu, Y.: P-V criticality in the extended phase space of black holes in massive gravity. Phys. Rev. D 91, 124033 (2015)

    Article  ADS  Google Scholar 

  61. Cai, R., Cao, L., Yang, R.: P-V criticality in the extended phase space of Gauss-Bonnet black holes in AdS space. JHEP 09, 005 (2013). arXiv:1306.6233v4

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers for their valuable suggestions. One of us (PP) would like to thank UGC, New Delhi for financial support through the award of a Junior Research Fellowship (JRF) during 2010–12 and SRF during 2012–13. VCK would like to acknowledge Associateship of IUCAA, Pune.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Prasia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasia, P., Kuriakose, V.C. Quasi normal modes and P-V criticallity for scalar perturbations in a class of dRGT massive gravity around black holes. Gen Relativ Gravit 48, 89 (2016). https://doi.org/10.1007/s10714-016-2083-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2083-9

Keywords

Navigation