Skip to main content

Advertisement

Log in

Fluid Discrimination Based on Inclusion-Based Method for Tight Sandstone Reservoirs

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Fluid discrimination is challenging for reservoir prediction, especially for tight sandstones with special petrophysical properties. In this paper, we first review the effective medium models that are widely used in seismic exploration and a variety of inversion methods and reservoir prediction strategies in reservoir prediction. Rock physics modeling takes an important role in reservoir prediction by linking petrophysical properties and elastic parameters. We also review the theoretical implications for different rock physics models that are based on the inclusion-based method, focusing specifically on the modeling workflow for conventional sand-shale reservoirs and two models for tight sandstones. The applicability of the conventional fluid substitution equations is analyzed in detail. Then, a new inclusion-based rock physics model for tight sandstones is proposed by considering the fluid pressure ratio between cracks and stiff pores. The proposed model helps to highlight the difference between different pores and present reasonable fluid information. In the application, a detailed prediction process for fluid discrimination is given, in which the Bayes posterior prediction framework is adopted to provide the maximum posterior probability solution and its posterior probability. Field data applications demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Alemie W, Sacchi MD (2011) High-resolution three-term AVO inversion by means of a trivariate Cauchy probability distribution. Geophysics 76(3):R43–R55

    Article  Google Scholar 

  • Avseth P, Johansen TA, Bakhorji A, Mustafa HM (2014) Rock-physics modeling guided by depositional and burial history in low-to-intermediate-porosity sandstones. Geophysics 79(2):D115–D121

    Article  Google Scholar 

  • Ba J, Zhao J, Carcione JM, Huang X (2016) Compressional wave dispersion due to rock matrix stiffening by clay squirt flow. Geophys Res Lett 43(12):6186–6195

    Article  Google Scholar 

  • Ba J, Xu W, Fu LY, Carcione JM, Zhang L (2017) Rock anelasticity due to patchy saturation and fabric heterogeneity: a double double-porosity model of wave propagation. J Geophys Res Solid Earth 122(3):1949–1976

    Google Scholar 

  • Ba J, Ma R, Carcione JM, Picotti S (2019) Ultrasonic wave attenuation dependence on saturation in tight oil siltstones. J Petrol Sci Eng 179:1114–1122

    Article  Google Scholar 

  • Berryman JG (1980) Long-wavelength propagation in composite elastic media II. Ellipsoidal inclusions. J Acoust Soc Am 68(6):1820–1831

    Article  Google Scholar 

  • Berryman JG (1992) Single-scattering approximations for coefficients in Biot’s equations of poroelasticity. J Acoust Soc Am 91(2):551–571

    Article  Google Scholar 

  • Biot MA (1956) Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range and II. Higher-frequency range. J Acoust Soc Am 28:168–191

    Article  Google Scholar 

  • Borgomano JVM, Pimienta L, Fortin J, Guéguen Y (2017) Dispersion and attenuation measurements of the elastic moduli of a dual-porosity limestone. J Geophys Res-Solid Earth 122(4):2690–2711

    Article  Google Scholar 

  • Bube KP, Langan RT (1997) Hybrid ℓ1/ℓ2 minimization with applications to tomography. Geophysics 62(4):1183–1195

    Article  Google Scholar 

  • Chapman M (2003) Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity. Geophys Prospect 51(5):369–379

    Article  Google Scholar 

  • Chapman M, Zatsepin SV, Crampin S (2002) Derivation of a microstructural poroelastic model. Geophys J Int 151(2):427–451

    Article  Google Scholar 

  • Chen H (2020) Seismic frequency component inversion for elastic parameters and maximum inverse quality factor driven by attenuating rock physics models. Surv Geophys 41(4):835–857

    Article  Google Scholar 

  • Chen H, Zhang G (2017) Estimation of dry fracture weakness, porosity, and fluid modulus using observable seismic reflection data in a gas-bearing reservoir. Surv Geophy 38(3):651–678

    Article  Google Scholar 

  • Dutta NC, Odé H (1979) Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (White model)—part II: results. Geophysics 44(11):1789–1805

    Article  Google Scholar 

  • Dvorkin J, Nur A (1993) Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms. Geophysics 58(4):524–533

    Article  Google Scholar 

  • Esser E, Lou Y, Xin J (2013) A method for finding structured sparse solutions to nonnegative least squares problems with applications. SIAM J Imaging Sci 6(4):2010–2046

    Article  Google Scholar 

  • Fatti JL, Smith GC, Vail PJ, Strauss PJ, Levitt PR (1994) Detection of gas in sandstone reservoirs using AVO analysis: a 3-D seismic case history using the Geostack technique. Geophysics 59(9):1362–1376

    Article  Google Scholar 

  • Fawad M, Hansen JA, Mondol NH (2020) Seismic-fluid detection—a review. Earth Sci Rev 210:103347

    Article  Google Scholar 

  • Feng R, Luthi SM, Gisolf D, Angerer E (2018) Reservoir lithology classification based on seismic inversion results by hidden Markov models: applying prior geological information. Mar Pet Geol 93:218–229

    Article  Google Scholar 

  • Fjeldstad T, Grana D (2018) Joint probabilistic petrophysics-seismic inversion based on Gaussian mixture and Markov chain prior models. Geophysics 83(1):R31–R42

    Article  Google Scholar 

  • Fryer GJ (1980) A slowness approach to the reflectivity method of seismogram synthesis. Geophys J Int 63(3):747–758

    Article  Google Scholar 

  • Grana D (2020) Bayesian petroelastic inversion with multiple prior models. Geophysics 85(5):M57–M71

    Article  Google Scholar 

  • Grana D, Mukerji T, Dvorkin J, Mavko G (2012) Stochastic inversion of facies from seismic data based on sequential simulations and probability perturbation method. Geophysics 77(4):M53–M72

    Article  Google Scholar 

  • Guéguen Y, Kachanov M (2011) Effective elastic properties of cracked rocks—an overview. In: Leroy YM, Lehner FK (eds) Mechanics of crustal rocks. Springer, Vienna, pp 73–125

    Chapter  Google Scholar 

  • Guo Z, Lai J, Zhang K, Mao X, Liu J (2020) Geosciences in central south university: a state-of-the-art review. J Central South Univ 27(4):975–996

    Article  Google Scholar 

  • Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13(4):213–222

    Article  Google Scholar 

  • Hu Y, Zhang D, Ye J, Li X, He X (2012) Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Trans Pattern Anal 35(9):2117–2130

    Article  Google Scholar 

  • Keys RG, Xu S (2002) An approximation for the Xu–White velocity model. Geophysics 67(5):1406–1414

    Article  Google Scholar 

  • Kobayashi Y, Mavko G (2016) Variation in P-wave modulus with frequency and water saturation: extension of dynamic-equivalent-medium approach. Geophysics 81(5):D479–D494

    Article  Google Scholar 

  • Kuster GT, Toksöz MN (1974) Velocity and attenuation of seismic waves in two-phase media: part I. Theoretical formulations. Geophysics 39(5):587–606

    Article  Google Scholar 

  • Lindberg DV, Omre H (2015) Inference of the transition matrix in convolved hidden Markov models and the generalized Baum–Welch algorithm. IEEE Trans Geosci Remote Sens 53(12):6443–6456

    Article  Google Scholar 

  • Liu H, Li J, Chen X, Hou B, Chen L (2016) Amplitude variation with offset inversion using the reflectivity method. Geophysics 81(4):R185–R195

    Article  Google Scholar 

  • Mallick S, Adhikari S (2015) Amplitude-variation-with-offset and prestack-waveform inversion: a direct comparison using a real data example from the Rock Springs Uplift, Wyoming, USA. Geophysics 80(2):B45–B59

    Article  Google Scholar 

  • Maschio C, Schiozer DJ (2014) Bayesian history matching using artificial neural network and Markov chain Monte Carlo. J Petrol Sci Eng 123:62–71

    Article  Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J (2020) The rock physics handbook. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574

    Article  Google Scholar 

  • Pan X, Zhang G (2018) Model parameterization and PP-wave amplitude versus angle and azimuth (AVAZ) direct inversion for fracture quasi-weaknesses in weakly anisotropic elastic media. Surv Geophys 39(5):937–964

    Article  Google Scholar 

  • Pan X, Zhang G, Yin X (2017) Azimuthally anisotropic elastic impedance inversion for fluid indicator driven by rock physics. Geophysics 82(6):C211–C227

    Article  Google Scholar 

  • Pan X, Zhang G, Yin X (2018) Elastic impedance variation with angle and azimuth inversion for brittleness and fracture parameters in anisotropic elastic media. Surv Geophys 39(5):965–992

    Article  Google Scholar 

  • Pang M, Ba J, Carcione JM, Picotti S, Zhou J, Jiang R (2019) Estimation of porosity and fluid saturation in carbonates from rock-physics templates based on seismic Q. Geophysics 84(6):M25–M36

    Article  Google Scholar 

  • Papageorgiou G, Chapman M (2017) Wave-propagation in rocks saturated by two immiscible fluids. Geophys J Int 209(3):1761–1767

    Article  Google Scholar 

  • Ruiz F, Cheng A (2010) A rock physics model for tight gas sand. Lead Edge 29(12):1484–1489

    Article  Google Scholar 

  • Ruiz F, Dvorkin J (2010) Predicting elasticity in nonclastic rocks with a differential effective medium model. Geophysics 75(1):E41–E53

    Article  Google Scholar 

  • Russell BH, Gray D, Hampson DP (2011) Linearized AVO and poroelasticity. Geophysics 76(3):C19–C29

    Article  Google Scholar 

  • Shuey RT (1985) A simplification of the Zoeppritz equations. Geophysics 50(4):609–614

    Article  Google Scholar 

  • Silva AA, Tavares MW, Carrasquilla A, Misságia R, Ceia M (2020) Petrofacies classification using machine learning algorithms. Geophysics 85(4):WA101–WA113

    Article  Google Scholar 

  • Smith GC, Gidlow PM (1987) Weighted stacking for rock property estimation and detection of gas. Geophys Prospect 35(9):993–1014

    Article  Google Scholar 

  • Smith TM, Sayers CM, Sondergeld CH (2009) Rock properties in low-porosity/low-permeability sandstones. Lead Edge 28(1):48–59

    Article  Google Scholar 

  • Song Y, Hu H, Rudnicki JW (2016a) Dynamic bulk and shear moduli due to grain-scale local fluid flow in fluid-saturated cracked poroelastic rocks: theoretical model. J Mech Phys Solids 92:28–54

    Article  Google Scholar 

  • Song Y, Hu H, Rudnicki JW (2016b) Deriving Biot–Gassmann relationship by inclusion-based method. Geophysics 81(6):D657–D667

    Article  Google Scholar 

  • Sun W, Xiong F, Ba J, Carcione JM (2018) Effects of ellipsoidal heterogeneities on wave propagation in partially saturated double-porosity rocks. Geophysics 83(3):WC71–WC81

    Article  Google Scholar 

  • Tang X (2011) A unified theory for elastic wave propagation through porous media containing cracks—an extension of Biot’s poroelastic wave theory. Sci China-Earth Sci 54(9):1441–1452

    Article  Google Scholar 

  • Theune U, Jensås IØ, Eidsvik J (2010) Analysis of prior models for a blocky inversion of seismic AVA data. Geophysics 75(3):C25–C35

    Article  Google Scholar 

  • Tihonov AN (1963) Solution of incorrectly formulated problems and the regularization method. Sov Math 4:1035–1038

    Google Scholar 

  • Wang P, Chen X, Li J, Wang B (2020a) Accurate porosity prediction for tight sandstone reservoir: a case study from North China. Geophysics 85(2):B35–B47

    Article  Google Scholar 

  • Wang P, Chen X, Wang B, Li J, Dai H (2020b) An improved method for lithology identification based on a hidden Markov model and random forests. Geophysics 85(6):IM27–IM36

  • Wang P, Li J, Chen X, Wang B (2020c) Joint probabilistic fluid discrimination of tight sandstone reservoirs based on Bayes discriminant and deterministic rock physics modeling. J Pet Sci Eng 191:107218

  • Wang P, Li J, Chen X, Cui YA, Wang E, Yan G (2021) Extending the inclusion-based effective medium model with fluid pressures caused by wave-induced flow. Int J Rock Mech Min Sci 145:104849

  • Wang P, Chen X, Li X, Cui YA, Li J, Wang B (2022) Analysis and estimation of an inclusion-based effective fluid modulus for tight gas-bearing sandstone reservoirs. IEEE Trans Geosci Remote Sens 60:4502710

  • White JE (1975) Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics 40(2):224–232

    Article  Google Scholar 

  • Woodworth J, Chartrand R (2016) Compressed sensing recovery via nonconvex shrinkage penalties. Inverse Probl 32(7):075004

    Article  Google Scholar 

  • Wu TT (1966) The effect of inclusion shape on the elastic moduli of a two-phase material. Int J Solids Struct 2(1):1–8

    Article  Google Scholar 

  • Wu X, Yan S, Qi J, Zeng H (2020) Deep learning for characterizing paleokarst collapse features in 3-D seismic images. J Geophys Res-Solid Earth 125(9):e2020JB019685

    Article  Google Scholar 

  • Xu S, Payne MA (2009) Modeling elastic properties in carbonate rocks. Lead Edge 28(1):66–74

    Article  Google Scholar 

  • Xu S, White RE (1996) A physical model for shear-wave velocity prediction. Geophys Prospect 44(4):687–717

    Article  Google Scholar 

  • Yu S, Ma J (2021) Deep learning for geophysics: current and future trends. Rev Geophys 59(3):e2021RG000742

    Article  Google Scholar 

  • Zhang L, Ba J, Carcione JM, Fu LY (2020) Differential poroelasticity model for wave dissipation in self-similar rocks. Int J Rock Mech Min Sci 128:104281

    Article  Google Scholar 

  • Zhi L, Chen S, Li XY (2016) Amplitude variation with angle inversion using the exact Zoeppritz equations—theory and methodology. Geophysics 81(2):N1–N15

    Article  Google Scholar 

  • Zhou L, Chen Z, Li J, Chen X, Liu X, Liao J (2020) Nonlinear amplitude versus angle inversion for transversely isotropic media with vertical symmetry axis using new weak anisotropy approximation equations. Pet Sci 17(3):628–644

    Article  Google Scholar 

  • Zong Z, Yin X, Wu G (2012) AVO inversion and poroelasticity with P-and S-wave moduli. Geophysics 77(6):N17–N24

    Article  Google Scholar 

  • Zong Z, Yin X, Wu G (2015) Geofluid discrimination incorporating poroelasticity and seismic reflection inversion. Surv Geophys 36(5):659–681

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 42130810, 42174170, 41874145, 72088101, and 42074165) and the China Postdoctoral Science Foundation (Grant No. 2021M703629)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-an Cui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: The Coefficients \(P^{{\rm mi}}\) and \(Q^{{\rm mi}}\) for Randomly Oriented Ellipsoids

The coefficients \(P^{{\rm mi}}\) and \(Q^{{\rm mi}}\) are two important parameters, which associate the rock modulus with the pore aspect ratio \(r\). Following Berryman (1980), these geometric factors are given by

$$P^{{\rm mi}} = \frac{{F_{1} }}{{F_{2} }},$$
(32)
$$Q^{{\rm mi}} = \frac{1}{5}\left( \frac{2}{{F_{3}}} + \frac{1}{{F_{4}}}+\frac{{F_{4} F_{5} + F_{6} F_{7} + F_{8} F_{9} }}{{F_{2} F_{4} }} \right),$$
(33)

where

$$F_{1} = 1 + A\left[ {\frac{3}{2}\left( {f + \vartheta } \right) - R\left( {\frac{3}{2}f + \frac{5}{2}\vartheta - \frac{4}{3}} \right)} \right],$$
(34)
$$\begin{aligned} F_{2} & = 1 + A\left[ {1{ + }\frac{3}{2}\left( {f + \vartheta } \right) - \frac{1}{2}R\left( {3f + 5\vartheta } \right)} \right] + B\left( {3 - 4R} \right) \\ {\kern 1pt} & \quad + \frac{1}{2}A\left( {A + 3B} \right)\left( {3 - 4R} \right)\left[ {f + \vartheta - R\left( {f - \vartheta + 2\vartheta^{2} } \right)} \right], \\ \end{aligned}$$
(35)
$$F_{3} = 1 + A\left[ {1 - \left( {f + \frac{3}{2}\vartheta } \right) + R\left( {f + \vartheta } \right)} \right],$$
(36)
$$F_{4} = 1 + \frac{1}{4}A\left[ {f + 3\vartheta - R\left( {f + \vartheta } \right)} \right],$$
(37)
$$F_{5} = A\left[ { - f + R\left( {f + \vartheta - \frac{4}{3}} \right)} \right] + B\vartheta \left( {3 - 4R} \right),$$
(38)
$$F_{6} = 1 + A\left[ {1 + f - R\left( {f + \vartheta } \right)} \right] + B\left( {1 - \vartheta } \right)\left( {3 - 4R} \right),$$
(39)
$$F_{7} = 2 + \frac{1}{4}A\left[ {3f + 9\vartheta - R\left( {3f + 5\vartheta } \right)} \right] + B\vartheta \left( {3 - 4R} \right),$$
(40)
$$F_{8} = A\left[ {1 - 2R + \frac{1}{2}f\left( {R - 1} \right) + \frac{1}{2}\vartheta \left( {5R - 3} \right)} \right] + B\left( {1 - \vartheta } \right)\left( {3 - 4R} \right),$$
(41)
$$F_{9} = A\left[ {\left( {R - 1} \right)f - R\vartheta } \right] + B\vartheta \left( {3 - 4R} \right),$$
(42)

with \(A\), \(B\), and \(R\) given by

$$A = \frac{{\mu_{i} }}{{\mu_{{\rm m}} }} - 1,$$
(43)
$$B = \frac{1}{3}\left( {\frac{{K_{i} }}{{K_{{\rm m}} }} - \frac{{\mu_{i} }}{{\mu_{{\rm m}} }}} \right),$$
(44)
$$R = \frac{{1 - 2\nu_{{\rm m}} }}{{2\left( {1 - \nu_{{\rm m}} } \right)}},$$
(45)

and

$$\vartheta = \frac{r}{{\left( {1{ - }r^{2} } \right)^{\frac{3}{2}} }}\left[ {\cos^{ - 1} r - r\left( {1 - r^{2} } \right)^{\frac{1}{2}} } \right],$$
(46)
$$f = \frac{{r^{2} }}{{1 - r^{2} }}\left( {3\vartheta - 2} \right).$$
(47)

Appendix 2: The Theory of Inclusion-Based Method

According to Song et al. (2016b), the relation between the average stress over all inclusions \({{\varvec{\upsigma}}}_{ai}\) and the average stress of the entire fluid-saturated porous rock \({\overline{\mathbf{\sigma }}}\) is given by (Hill 1965)

$$\left( {{\mathbf{I}} - {\mathbf{L}}_{0} {\mathbf{L}}^{ - 1} } \right){\overline{\mathbf{\sigma }}} = \phi^{*} \left( {{\mathbf{I}} - {\mathbf{L}}_{0} {\mathbf{L}}_{ai}^{ - 1} } \right){{\varvec{\upsigma}}}_{ai} ,$$
(48)

where \({\overline{\mathbf{\sigma }}} = \sum\nolimits_{i = 0}^{N} {\phi_{i} {{\varvec{\upsigma}}}_{i} }\) and \({{\varvec{\upsigma}}}_{i}\) is the ith component of the rock. \(i = 0\) indicates the solid grain; \(1 \le i \le N\) refers to the ith inclusion and \(N\) is the total number of inclusions. \({{\varvec{\upsigma}}}_{ai} = \frac{{\sum\nolimits_{i = 1}^{N} {\phi_{i} {{\varvec{\upsigma}}}_{i} } }}{{\phi^{*} }}\), \({{\varvec{\upsigma}}}_{ai} = {\mathbf{L}}_{ai} {\mathbf{e}}_{ai}\), \({\mathbf{e}}_{ai} = \frac{{\sum\nolimits_{i = 1}^{N} {\phi_{i} {\mathbf{e}}_{i} } }}{{\phi^{*} }}\), \({\overline{\mathbf{\sigma }}} = {\mathbf{L\overline{e}}}\), and \({\overline{\mathbf{e}}} = \sum\nolimits_{i = 0}^{N} {\phi_{i} {\mathbf{e}}_{i} }\).

For the ith inclusion, the inclusion deformation \({\mathbf{e}}_{i}\) is related to the strain of the reference medium \({\mathbf{e}}_{0}\):

$${\mathbf{e}}_{i} = \left( {{\mathbf{I}} - {\mathbf{S}}_{i} } \right)^{ - 1} {\mathbf{e}}_{0} - \left( {{\mathbf{I}} - {\mathbf{S}}_{i} } \right)^{ - 1} {\mathbf{S}}_{i} {\mathbf{L}}_{0}^{ - 1} {{\varvec{\upsigma}}}_{i} ,$$
(49)

where \({\mathbf{S}}_{i}\) is the Eshelby tensor for the ith inclusion.

Besides, the connection between microstructure and effective elastic properties is given by

$$\left( {{\mathbf{I}} - {\mathbf{L}}_{0} {\mathbf{L}}^{ - 1} } \right){\mathbf{\overline{\sigma } = }}\sum\limits_{i = 1}^{N} {\phi_{i} \left[ {{{\varvec{\upsigma}}}_{i} + {\mathbf{L}}_{0} \left( {{\mathbf{I}} - {\mathbf{S}}_{i} } \right)^{ - 1} {\mathbf{S}}_{i} {\mathbf{L}}_{0}^{ - 1} {{\varvec{\upsigma}}}_{i} - {\mathbf{L}}_{0} \left( {{\mathbf{I}} - {\mathbf{S}}_{i} } \right)^{ - 1} {\mathbf{e}}_{0} } \right]} .$$
(50)

Assuming that the average strain follows

$${\overline{\mathbf{e}}} = {\mathbf{T}}_{0} {\mathbf{e}}_{0} ,$$
(51)

where \({\mathbf{T}}_{0} = \left[ {{\mathbf{I}} + {\mathbf{S}}_{0} {\mathbf{L}}_{0}^{ - 1} \left( {{\mathbf{L}} - {\mathbf{L}}_{0} } \right)} \right]^{ - 1}\) and combing Eqs. 48, 49 and 50 leads to

$$\begin{aligned} \sum\limits_{i = 1}^{N} {\phi_{i} \left( {{\mathbf{I}} - {\mathbf{S}}_{i} } \right)^{ - 1} {\mathbf{L}}_{0}^{ - 1} {{\varvec{\upsigma}}}_{i} } & = \left[ {\sum\limits_{i = 1}^{N} {\phi_{i} \left( {{\mathbf{I}} - {\mathbf{S}}_{i} } \right)^{ - 1} } } \right]\left[ {\left( {{\mathbf{L}} - {\mathbf{L}}_{0} } \right)^{ - 1} + \left( {{\mathbf{L}}_{0} - {\mathbf{L}}_{{\rm d}} } \right)^{ - 1} } \right] \\ & \quad \times \left( {{\mathbf{I}} - {\mathbf{L}}_{0} {\mathbf{L}}_{ai}^{ - 1} } \right)\sum\limits_{i = 1}^{N} {\phi_{i} {{\varvec{\upsigma}}}_{i} } , \\ \end{aligned}$$
(52)

where \({\mathbf{L}}_{{\rm d}}\) is the elastic modulus of the dry rock frame:

$${\mathbf{L}}_{{\rm d}} = {\mathbf{L}}_{0} - {\mathbf{L}}_{0} \left\{ {{\mathbf{S}}_{0} + \left[ {\sum\limits_{i = 1}^{N} {\phi_{i} \left( {{\mathbf{I}} - {\mathbf{S}}_{i} } \right)^{ - 1} } } \right]^{ - 1} } \right\}^{ - 1} .$$
(53)

Appendix 3: Forward Theory of the Reflectivity Method

The reflectivity method is an effective way to investigate the wave propagation by considering the transmission loss and internal multiples. The reflectivity coefficient \(R_{{{\text{PP}}}} (p,\omega )\) is the total response in the frequency-slowness domain for a given stack of \(N\) layers (Wang et al. 2020a):

$$R_{{{\text{PP}}}} (p,\omega ) = \frac{{{\varvec{\nu}}_{0,4} }}{{{\varvec{\nu}}_{0,1} }},$$
(54)

where \({\varvec{\nu}}_{0,1}\) and \({\varvec{\nu}}_{0,4}\) are the first and fourth elements of the top-layer response \({\varvec{\nu}}_{0}\), respectively. The vector \({\varvec{\nu}}_{0}\) is given by

$${\varvec{\nu}}_{0} = {\mathbf{Q}}_{0} {\mathbf{Q}}_{1} \cdots {\mathbf{Q}}_{i} \cdots {\mathbf{Q}}_{N - 1} {\varvec{\nu}}_{N} ,$$
(55)

where \({\varvec{\nu}}_{N} = \left[ {1\begin{array}{*{20}l} {} \hfill \\ \end{array} 0\begin{array}{*{20}l} {} \hfill \\ \end{array} 0\begin{array}{*{20}l} {} \hfill \\ \end{array} 0\begin{array}{*{20}l} {} \hfill \\ \end{array} 0\begin{array}{*{20}l} {} \hfill \\ \end{array} 0} \right]^{{\rm T}}\) is the starting vector at the bottom and \({\mathbf{Q}}_{i}\) is the propagator matrix of each layer

$${\mathbf{Q}}_{i} = {\mathbf{T}}_{i}^{ + } {\mathbf{E}}_{i} {\mathbf{T}}_{i}^{ - } ,$$
(56)

in which \({\mathbf{E}}_{i}\) is the phase shift matrix of reflection

$${\mathbf{E}}_{i} = diag\left[ {\begin{array}{*{20}c} {e^{{ - i\omega \Delta h\left( {q_{{\rm p}} + q_{s} } \right)}} } & 1 & {e^{{ - i\omega \Delta h\left( {q_{{\rm p}} - q_{s} } \right)}} } & {e^{{i\omega \Delta h\left( {q_{{\rm p}} - q_{s} } \right)}} } & 1 & {e^{{i\omega \Delta h\left( {q_{{\rm p}} + q_{s} } \right)}} } \\ \end{array} } \right],$$
(57)

and \({\mathbf{T}}_{i}^{ + }\) and \({\mathbf{T}}_{i}^{ - }\) are the downward and upward interface crossing matrices. The matrices \({\mathbf{T}}_{i}^{ + }\) and \({\mathbf{T}}_{i}^{ - }\) are expressed as follows:

$${\mathbf{T}}_{i}^{ + } = \left[ {\begin{array}{*{20}c} { - \left( {p^{2} + q_{{\rm p}} q_{s} } \right)/\mu } & { - 2pq_{{\rm p}} /\mu } & { - \left( {p^{2} - q_{{\rm p}} q_{s} } \right)/\mu } \\ {iq_{s} /\beta^{2} } & 0 & { - iq_{s} /\beta^{2} } \\ { - ip\left( {\Gamma + 2q_{{\rm p}} q_{s} } \right)} & { - 4ip^{2} q_{{\rm p}} } & { - ip\left( {\Gamma - 2q_{{\rm p}} q_{s} } \right)} \\ { - ip\left( {\Gamma + 2q_{{\rm p}} q_{s} } \right)} & { - 2i\Gamma q_{{\rm p}} } & { - ip\left( {\Gamma - 2q_{{\rm p}} q_{s} } \right)} \\ { - iq_{{\rm p}} /\beta^{2} } & 0 & { - iq_{{\rm p}} /\beta^{2} } \\ { - \mu \left( {\Gamma^{2} + 4p^{2} q_{{\rm p}} q_{s} } \right)} & { - 4\mu \Gamma pq_{{\rm p}} } & { - \mu \left( {\Gamma^{2} - 4p^{2} q_{{\rm p}} q_{s} } \right)} \\ \end{array} } \right. \cdots \quad \cdots \left. {\begin{array}{*{20}c} {\left( {p^{2} - q_{{\rm p}} q_{s} } \right)/\mu } & { - 2pq_{s} /\mu } & { - \left( {p^{2} + q_{{\rm p}} q_{s} } \right)/\mu } \\ { - iq_{s} /\beta^{2} } & 0 & { - iq_{s} /\beta^{2} } \\ {ip\left( {\Gamma - 2q_{{\rm p}} q_{s} } \right)} & { - 2i\Gamma q_{s} } & { - ip\left( {\Gamma + 2q_{{\rm p}} q_{s} } \right)} \\ {ip\left( {\Gamma - 2q_{{\rm p}} q_{s} } \right)} & { - 4ip^{2} q_{s} } & { - ip\left( {\Gamma + 2q_{{\rm p}} q_{s} } \right)} \\ { - iq_{{\rm p}} /\beta^{2} } & 0 & {iq_{{\rm p}} /\beta^{2} } \\ {\mu \left( {\Gamma^{2} - 4p^{2} q_{{\rm p}} q_{s} } \right)} & { - 4\mu \Gamma pq_{s} } & { - \mu \left( {\Gamma^{2} + 4p^{2} q_{{\rm p}} q_{s} } \right)} \\ \end{array} } \right],$$
(58)

and

$${\mathbf{T}}_{i}^{ - } = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {{\text{T}}_{i}^{ + } (6,1)} & {{\text{T}}_{i}^{ + } (5,1)} & {{\text{T}}_{i}^{ + } (3,1)} \\ { - {\text{T}}_{i}^{ + } (6,5)} & 0 & { - {\text{T}}_{i}^{ + } (4,5)} \\ { - {\text{T}}_{i}^{ + } (6,3)} & { - {\text{T}}_{i}^{ + } (5,1)} & { - {\text{T}}_{i}^{ + } (3,3)} \\ {{\text{T}}_{i}^{ + } (6,3)} & { - {\text{T}}_{i}^{ + } (5,1)} & {{\text{T}}_{i}^{ + } (3,3)} \\ { - {\text{T}}_{i}^{ + } (6,2)} & 0 & { - {\text{T}}_{i}^{ + } (4,2)} \\ {{\text{T}}_{i}^{ + } (6,1)} & { - {\text{T}}_{i}^{ + } (5,1)} & {{\text{T}}_{i}^{ + } (3,1)} \\ \end{array} } & {\begin{array}{*{20}c} {{\text{T}}_{i}^{ + } (3,1)} & {{\text{T}}_{i}^{ + } (2,1)} & {{\text{T}}_{i}^{ + } (1,1)} \\ { - {\text{T}}_{i}^{ + } (3,5)} & 0 & { - {\text{T}}_{i}^{ + } (1,5)} \\ { - {\text{T}}_{i}^{ + } (3,3)} & {{\text{T}}_{i}^{ + } (1,2)} & { - {\text{T}}_{i}^{ + } (1,3)} \\ {{\text{T}}_{i}^{ + } (3,3)} & {{\text{T}}_{i}^{ + } (2,1)} & {{\text{T}}_{i}^{ + } (1,3)} \\ { - {\text{T}}_{i}^{ + } (3,2)} & 0 & { - {\text{T}}_{i}^{ + } (1,2)} \\ {{\text{T}}_{i}^{ + } (3,1)} & { - {\text{T}}_{i}^{ + } (2,1)} & {{\text{T}}_{i}^{ + } (1,1)} \\ \end{array} } \\ \end{array} } \right],$$
(59)

where \(q_{{\rm p}} = \sqrt {1/\psi^{2} - p^{2} }\), \(q_{s} = \sqrt {1/\beta^{2} - p^{2} }\), \(\Gamma = 2p^{2} - 1/\beta^{2}\), and \(\mu = \rho \beta^{2}\). \(\Delta h\), \(\psi\), \(\beta\), \(p\), and \(\rho\) are the thickness, P- and S-wave velocities, ray parameter, and density of the ith layer, respectively.

Then, \(R_{{{\text{PP}}}} (p,\omega )\) is changed to \(R_{{{\text{PP}}}} (\theta ,\omega )\) by using Snell’s law \(p = {{\sin (\theta )/ \psi}}\) and \(R_{{{\text{PP}}}} (\theta ,\omega )\) is finally changed to \(R_{{{\text{PP}}}} (\theta ,t)\) by inverse Fourier transform. \(R_{{{\text{PP}}}} (\theta ,t)\) belongs to the time-angle domain and can be used as the forward modeling engine in the seismic AVO inversion.

Appendix 4: Bayes Discriminant Method

According to Bayes’ law, the posterior probability that for a given \({\mathbf{X = x}}\), \({\mathbf{Y}}\) belongs to the class \(c_{k}\) is given by

$$P\left( {{\mathbf{Y}} = c_{k} \left| {{\mathbf{X}} = {\mathbf{x}}} \right.} \right)\frac{{P\left( {{\mathbf{X}} = {\mathbf{x}}\left| {{\mathbf{Y}} = c_{k} } \right.} \right)P\left( {{\mathbf{Y}} = c_{k} } \right)}}{{\sum\nolimits_{k} {P\left( {{\mathbf{X}} = {\mathbf{x}}\left| {{\mathbf{Y}} = c_{k} } \right.} \right)P\left( {{\mathbf{Y}} = c_{k} } \right)} }},$$
(60)

where \(P\left( {{\mathbf{Y}} = c_{k} } \right)\) and \(P\left( {{\mathbf{X}} = {\mathbf{x}}\left| {{\mathbf{Y}} = c_{k} } \right.} \right)\) are prior and conditional probabilities, respectively, which are obtained by training well-logging data. By maximizing Eq. 60, the class that \({\mathbf{X = x}}\) belongs to can be estimated.

Considering the independent identically distributed assumption between the different parameters of \({\mathbf{X}}\), the conditional probability reduces to

$$P({\mathbf{X}} = {\mathbf{x}}|{\mathbf{Y}} = c_{k} ) = \mathop \prod \limits_{{i = 1}}^{n} P({\mathbf{X}} = x^{i} |{\mathbf{Y}} = c_{k} ),$$
(61)

where \(x^{i}\) is the ith feature of \({\mathbf{X}}\).

In this work, the posterior probability of shale content is expressed as follows:

$$P({\mathbf{Y}} = sh|{\mathbf{X}} = V_{{\rm P}} ,V_{{\rm S}} ,\rho ),$$
(62)

where \({\rm sh}\), \(V_{{\rm P}}\), \(V_{{\rm S}}\), and \(\rho\) are shale content, P- and S-wave velocities, and density, respectively.

The posterior probability of porosity (por) is given in an integral form:

$$\begin{aligned} P({\mathbf{Y}} = {\text{por}}|{\mathbf{X}} = V_{{\rm P}} ,V_{{\rm S}} ,\rho ) & = \int {P({\mathbf{Y}} = {{\rm sh}}|{\mathbf{X}} = V_{{\rm P}} ,V_{{\rm S}} ,\rho )} \\ \quad \times P({\mathbf{Y}} = {\text{por}}|{\mathbf{X}} = V_{{\rm P}} ,V_{{\rm S}} ,\rho ,{\rm sh}){d}\left( {{\rm sh}} \right). \\ \end{aligned}$$
(63)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Cui, Ya. & Liu, J. Fluid Discrimination Based on Inclusion-Based Method for Tight Sandstone Reservoirs. Surv Geophys 43, 1469–1496 (2022). https://doi.org/10.1007/s10712-022-09712-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-022-09712-5

Keywords

Navigation