Skip to main content

Advertisement

Log in

Land use/land cover (LU/LC) change dynamics using indices overlay method in Gautam Buddha Nagar District-India

  • Published:
GeoJournal Aims and scope Submit manuscript

Abstract

This study is aimed to analyze the dynamics of land use/ land cover (LU/LC) change in a newly created special economic zone, Gautam Buddha Nagar district during 2003–2015. The Landsat satellite data has been used to map the LU/LC pattern of 2003 and 2015 of the study area, using indices overlay method. Consequently, the indices overlay have been created using three land-use indices, i.e. modified normalized difference water index (MNDWI), soil adjusted vegetation index (SAVI), and enhanced built-up and bareness index (EBBI), and then the maximum likelihood classifier (MLC) has been used for the LU/LC classification. The result illustrates that the built-up area (419.35%) and open land (388.36%) have increased during 2003–2015 while the cropland (− 34.38%), scrubland (− 73.25%), and water bodies (− 58.37%) have declined. Further, northern parts of the district have experienced maximum change in the LU/LC while the southern parts have experienced comparatively low change. The study also reveals that the increase in the built-up area occurred mostly at the cost of cropland and scrubland. The statistical analysis shows that the EBBI and SAVI have high relationships with LU/LC while the MNDWI has a comparatively low relationship. The study concludes that cropland and scrubland are the main LU/LC types that get transformed due into the built-up area the study area and the SAVI, MNDWI, and EBBI are the good indicators in the study of LU/LC classification and change analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acharya, T. D., Subedi, A., & Lee, D. H. (2018). Evaluation of water indices for surface water extraction in a landsat 8 scene of Nepal. Sensors, 18, 2580.

    Article  Google Scholar 

  • Alam, A., Bhatt, A. S., & Maheen, M. (2019). Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley. GeoJournal. https://doi.org/10.1007/s10708-019-10037-x.

    Article  Google Scholar 

  • Alqurashi, A. F., & Kumar, L. (2019). An assessment of the impact of urbanization and land use changes in the fast-growing cities of Saudi Arabia. Geocarto International, 34(1), 78–97.

    Article  Google Scholar 

  • As-syakur, A. R., Adnyana, I., Arthana, W., & Nuarsa, W. (2012). Enhanced built-up and bareness index (EBBI) for mapping built-up and bare land in an urban area. Remote Sensing, 4, 2957–2970.

    Article  Google Scholar 

  • Avtar, R., Tripathi, S., & Aggarwal, A. K. (2019). Assessment of energy–population–urbanization nexus with changing energy industry scenario in India. Land, 8, 124.

    Article  Google Scholar 

  • Barau, A. S., & Qureshi, S. (2015). Using agent-based modelling and landscape metrics to assess landscape fragmentation in Iskandar Malaysia. Ecological Processes, 4, 8. https://doi.org/10.1186/s13717-015-0033-1.

    Article  Google Scholar 

  • Bazan, G., Barba, A. C., Rotolo, A., & Marino, P. (2019). Geobotanical approach to detect land-use change of a Mediterranean landscape: A case study in Central Western Sicily. GeoJournal, 84, 795–811.

    Article  Google Scholar 

  • Berihun, M. L., Tsunekawa, A., Haregeweyn, N., et al. (2019). Exploring land use/land cover changes, drivers and their implications in contrasting agro-ecological environments of Ethiopia. Land Use Policy, 87, 104052.

    Article  Google Scholar 

  • Census of India. (2011). District Census Handbook Gautam Buddha Nagar. Part XII-B. http://censusindia.gov.in/2011census/dchb/0910_PART_B_DCHB_GAUTAM%20BUDDHA%20NAGAR.pdf

  • Chakarborti, S., Das, D. N., Mondal, B., Shafizadeh-Moghadam, H., & Feng, Y. (2018). A neural network and landscape metrics to propose a flexible urban growth boundary: A case study. Ecological Indicators, 93, 952–965.

    Article  Google Scholar 

  • Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5), 893–903.

    Article  Google Scholar 

  • Chavanavesskul, S., & Cirella, G. T. (2020). Land use change model comparison: Mae sot special economic zone. In G. Cirella (Ed.), Sustainable human–nature relations. Advances in 21st century human settlements. Singapore: Springer.

    Google Scholar 

  • Das, P., Talukdar, S., Ziaul, S., Das, S., & Pal, S. (2019). Noise mapping and assessing vulnerability in meso level urban environment of Eastern India. Sustainable Cities and Society, 46, 101416. https://doi.org/10.1016/j.scs.2019.01.001.

    Article  Google Scholar 

  • de Arruda, M. R., Slingerland, M., Santos, J. Z. L., & Giller, K. E. (2019). Agricultural land use change and associated driving forces over the past 180 years in two municipalities of the Brazilian Cerrado. GeoJournal, 84(3), 555–570.

    Article  Google Scholar 

  • Dewan, A. M., Yamaguchi, Y., & Rahman, M. Z. (2012). Dynamics of land use/cover changes and the analysis of landscape fragmentation in Dhaka Metropolitan, Bangladesh. GeoJournal, 77(3), 315–330.

    Article  Google Scholar 

  • Dou, P., & Chen, Y. (2017). Dynamic monitoring of land-use/land-cover change and urban expansion in Shenzhen using Landsat imagery from 1988 to 2015. International Journal of Remote Sensing, 38(19), 5388–5407.

    Article  Google Scholar 

  • Dutta, D., Rahman, A., & Kundu, A. (2015). Growth of Dehradun city: An Application of Linear Spectral Unmixing (LSU) Technique using Multi-temporal Landsat Satellite Data Sets. Remote Sensing Applications: Society and Environment, 1, 98–111.

    Article  Google Scholar 

  • Dutta, D., Rahman, A., Paul, S. K., & Kundu, A. (2019). Changing pattern of urban landscape and its effect on land surface temperature in and around Delhi. Environmental Monitoring and Assessment, 191, 551.

    Article  Google Scholar 

  • Dutta, D., Rahman, A., Paul, S. K., & Kundu, A. (2020). Estimating urban growth in peri-urban areas and its interrelationships with built-up density using earth observation datasets. The Annals of Regional Science, 65, 67–82. https://doi.org/10.1007/s00168-020-00974-8.

    Article  Google Scholar 

  • Dutta, I., & Das, A. (2019). Exploring the dynamics of spatial inequality through the development of sub-city typologies in English Bazar Urban Agglomeration and its peri urban areas. GeoJournal, 84, 829–849.

    Article  Google Scholar 

  • Ganaie, T. A., Jamal, S., & Ahmad, W. S. (2020). Changing land use/land cover patterns and growing human population in Wular catchment of Kashmir Valley. India. GeoJournal. https://doi.org/10.1007/s10708-020-10146-y.

    Article  Google Scholar 

  • Gessner, U., Machwitz, M., Esch, T., Tillack, A., Naeimi, V., Kuenzer, C., & Dech, S. (2015). Multi-sensor mapping of West African land cover using MODIS, ASAR and TanDEM-X/TerraSAR-X data. Remote Sensing of Environment, 164, 282–297.

    Article  Google Scholar 

  • Glenn, E. P., Huete, A. R., Nagler, P. L., & Nelson, S. G. (2008). Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors, 8, 2136–2160.

    Article  Google Scholar 

  • Gupta, R. (2014). The pattern of urban land-use changes: A case study of the Indian cities. Environment and Urbanization ASIA, 5(1), 83–104.

    Article  Google Scholar 

  • Hansen, M. C., & Loveland, T. R. (2012). A review of large area monitoring of land cover change using Landsat data. Remote Sensing of Environment, 122, 66–74.

    Article  Google Scholar 

  • He, C., Shi, P., Xie, D., & Zhao, Y. (2010). Improving the normalized difference built-up index to map urban built-up areas using a semiautomatic segmentation approach. Remote Sensing Letters, 1(4), 213–221.

    Article  Google Scholar 

  • Healey, P. (2007). Urban complexity and spatial strategies: Towards a relational planning for our times. London: Routledge.

    Google Scholar 

  • Hu, T., Yang, J., Li, X., & Gong, P. (2016). Mapping urban land use by using landsat images and open social data. Remote Sensing, 8, 151.

    Article  Google Scholar 

  • Huete, A. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309.

    Article  Google Scholar 

  • Hütt, C., Koppe, W., Miao, Y., & Bareth, G. (2016). Best Accuracy Land Use/Land Cover (LULC) classification to derive crop types using multitemporal, multisensor, and multi-polarization SAR satellite images. Remote Sensing, 8, 684.

    Article  Google Scholar 

  • Kamga, M. A., Fils, S. C. N., Ayodele, M. O., Olatubara, C. O., Nzali, S., Adenikinju, A., & Khalifa, M. (2020). Evaluation of land use/land cover changes due to gold mining activities from 1987 to 2017 using landsat imagery, East Cameroon. GeoJournal, 85, 1097–1114.

    Article  Google Scholar 

  • Kayet, N., Pathak, K., Chakrabarty, A., & Sahoo, S. (2016). Urban heat island explored by co-relationship between land surface temperature vs multiple vegetation indices. Spatial Information Research, 24, 515–529.

    Article  Google Scholar 

  • Kharol, S. K., Kaskaoutis, D. G., Sharma, A. N., & Singh, R. P. (2013). Long-term (1951–2007) rainfall trends around six Indian cities: Current state, meteorological, and urban dynamics. Advances in Meteorology. https://doi.org/10.1155/2013/572954.

    Article  Google Scholar 

  • Kumar, V., Jain, S. K., & Singh, Y. (2010). Analysis of long-term rainfall trends in India. Hydrological Sciences Journal, 55(4), 484–496.

    Article  Google Scholar 

  • Kumari, B., Tayyab, M., Shahfahad, Salman, Mallick, J., Khan, M. F., & Rahman, A. (2018). Satellite-driven land surface temperature (LST) using Landsat 5, 7 (TM/ETM+ SLC) and Landsat 8 (OLI/TIRS) data and its association with built-up and green cover over urban Delhi, India. Remote Sensing in Earth Systems Sciences, 1(3–4), 63–78.

    Article  Google Scholar 

  • Lambin, E. F., & Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences, 108(9), 3465–3472.

    Article  Google Scholar 

  • Lambin, E. F., Turner, B. L., Geist, H. J., et al. (2001). The causes of land-use and land-cover change: Moving beyond the myths. Global Environmental Change, 11(4), 261–269.

    Article  Google Scholar 

  • Levien, M. (2012). The land question: special economic zones and the political economy of dispossession in India. The Journal of Peasant Studies, 39(3–4), 933–969.

    Article  Google Scholar 

  • Lin, X., Xu, M., Cao, C., Singh, R. P., Chen, W., & Ju, H. (2018). Land-use/land-cover changes and their influence on the ecosystem in Chengdu City, China during the period of 1992–2018. Sustainability, 10, 3580.

    Article  Google Scholar 

  • Long, H., Heilig, G. K., Li, X., & Zhang, M. (2007). Socio-economic development and land-use change: Analysis of rural housing land transition in the Transect of the Yangtse River, China. Land Use Policy, 24(1), 141–153.

    Article  Google Scholar 

  • Mallick, J., Al-Wadi, H., Rahman, A., & Ahmed, M. (2014). Landscape dynamic characteristics using satellite data for a mountainous watershed of Abha, Kingdom of Saudi Arabia. Environmental Earth Science, 72, 4973–4984.

    Article  Google Scholar 

  • Mallick, J., Rahman, A., & Singh, C. K. (2013). Modeling Urban Heat Islands in heterogeneous land surface and its correlation with impervious surface area by using night-time ASTER satellite data in highly urbanizing city. Delhi- India. Advances in Space Research, 52(4), 639–655.

    Article  Google Scholar 

  • Naikoo, M. W., Rihan, M., Ishtiaque, M., & Shahfahad. . (2020). Analyses of land use land cover (LULC) change and built-up expansion in the suburb of a metropolitan city: Spatio-temporal analysis of Delhi NCR using landsat datasets. Journal of Urban Management, 9(3), 347–359.

    Article  Google Scholar 

  • Nguyen, T. T., Hegedus, G., & Nguyen, T. L. (2019). Effect of land acquisition and compensation on the livelihoods of people in Quang Ninh District, Quang Binh Province: Labor and income. Land, 8, 91. https://doi.org/10.3390/land8060091.

    Article  Google Scholar 

  • NRSC. (1995). Natural Resource Census‐ Land Use Land Cover Database. Technical Report – Ver.1. Retrieved June 2020, from https://bhuvan-app1.nrsc.gov.in/2dresources/thematic/2LULC/lulc1112.pdf.

  • Pal, S., Singha, P., Lepcha, K., Debanshi, S., Talukdar, S., & Saha, T. K. (2021). Proposing multicriteria decision based valuation of ecosystem services for fragmented landscape in mountainous environment. Remote Sensing Applications: Society and Environment, 21, 10045. https://doi.org/10.1016/j.rsase.2020.100454.

    Article  Google Scholar 

  • Pal, S., & Talukdar, S. (2020). Assessing the role of hydrological modifications on land use/land cover dynamics in Punarbhaba river basin of Indo-Bangladesh. Environment, Development and Sustainability, 22, 363–382.

    Article  Google Scholar 

  • Pandey, P. C., Koutsias, N., Petropoulos, G. P., Srivastava, P. K., & Dor, E. B. (2019). Land use/land cover in view of earth observation: Data sources, input dimensions, and classifiers—A review of the state of the art. Geocarto International. https://doi.org/10.1080/10106049.2019.1629647.

    Article  Google Scholar 

  • Parwez, S., & Sen, V. (2016). Special economic zone, land acquisition, and impact on rural India. Emerging Economy Studies, 2(2), 223–239.

    Article  Google Scholar 

  • Patra, S., Shaoo, S., Mishra, P., & Mahapatra, S. C. (2018). Impacts of urbanization on land use/cover changes and its probable implications on local climate and groundwater level. Journal of Urban Management, 7(2), 70–84.

    Article  Google Scholar 

  • Praveen, B., Talukdar, S., Shahfahad, Mahato, S., Mondal, J., Sharma, P., et al. (2020). Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Scientific Reports, 10, 10342.

    Article  Google Scholar 

  • Rahimi, A. (2016). A methodological approach to urban land-use change modeling using infill development pattern—A case study in Tabriz, Iran. Ecological Processes, 5, 1.

    Article  Google Scholar 

  • Rahman, A., Aggarwal, S. P., Netband, M., & Fazal, S. (2011). Monitoring urban sprawl using remote sensing and GIS techniques of a fast growing urban centre, India. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(1), 56–64.

    Article  Google Scholar 

  • Rahman, A., Kumar, S., Fazal, S., & Siddiqui, M. (2012). Assessing land use/land cover change in the north-west district of Delhi using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 40(4), 689–697.

    Article  Google Scholar 

  • Rana, A., Uvo, C. B., Bengtsson, L., & Sarthi, P. P. (2012). Trend analysis for rainfall in Delhi and Mumbai, India. Climate Dynamics, 38(1–2), 45–56.

    Article  Google Scholar 

  • Rasul, A., Balzter, H., Ibrahim, G. R. F., Hameed, H. M., Wheeler, J., Adamu, B., et al. (2018). Applying built-up and bare-soil indices from landsat 8 to cities in dry climates. Land, 7, 81.

    Article  Google Scholar 

  • Ridd, M. K. (1995). Exploring a VIS (vegetation-impervious surface soil) model for urban ecosystem analysis through remote sensing: Comparative anatomy for cities. International Journal of Remote Sensing, 16(12), 2165–2185.

    Article  Google Scholar 

  • Sahana, M., Hong, H., & Sajjad, H. (2018). Analyzing urban spatial patterns and trend of urban growth using urban sprawl matrix: A study on Kolkata urban agglomeration, India. Science of The Total Environment, 628–629, 1557–1566.

    Article  Google Scholar 

  • Sannigrahi, S., Chakraborti, S., Joshi, P. K., Keesstra, S., Sen, S., Paul, S. K., et al. (2019). Ecosystem service value assessment of a natural reserve region for strengthening protection and conservation. Journal of Environmental Management, 244, 208–227.

    Article  Google Scholar 

  • Sapriza-Azuri, D., Jódar, J., Navarro, V., Slooten, L. J., Carrera, J., & Gupta, H. V. (2015). Impacts of rainfall spatial variability on hydrogeological response. Water Resource Research, 51(2), 1300–1314.

    Article  Google Scholar 

  • Shahfaha, Kumari, B., Tayyab, M., Hang, H. T., Khan, M. F., & Rahman, A. (2019). Assessment of public open spaces (POS) and landscape quality based on per capita POS index in Delhi, India. SN Applied Sciences, 1, 368.

    Article  Google Scholar 

  • Shahfahad, Mourya, M., Kumari, B., Tayyab, M., Paarcha, A., Asif, & Rahman, A. (2020). Indices based assessment of built-up density and urban expansion of fast growing Surat city using multi-temporal Landsat data sets. GeoJournal. https://doi.org/10.1007/s10708-020-10148-w.

    Article  Google Scholar 

  • Shishir, S., & Tsuyuzaki, S. (2018). Hierarchical classification of land use types using multiple vegetation indices to measure the effects of urbanization. Environmental Monitoring and Assessment, 190, 342.

    Article  Google Scholar 

  • Singh, R. B., & Singh, S. (2011). Rapid urbanization and induced flood risk in Noida. India. Asian Geographer, 28(2), 147–169.

    Article  Google Scholar 

  • Singh, S., & Hussian, A. (2016). Water quality index development for groundwater quality assessment of Greater Noida sub-basin, Uttar Pradesh, India. Cogent Engineering, 3(1), 1177155. https://doi.org/10.1080/23311916.2016.1177155.

    Article  Google Scholar 

  • Sinha, S., Sharma, L. K., & Nathawat, M. S. (2015). Improved Land-use/Land-cover classification of semi-arid deciduous forest landscape using thermal remote sensing. The Egyptian Journal of Remote Sensing and Space Science, 18(2), 217–233.

    Article  Google Scholar 

  • Somvanshi, S. S., Bhalla, O., Kunwar, P., Singh, M., & Singh, P. (2020). Monitoring spatial LULC changes and its growth prediction based on statistical models and earth observation datasets of Gautam Budh Nagar, Uttar Pradesh, India. Environment, Development and Sustainability, 22, 1073–1091.

    Article  Google Scholar 

  • Talukdar, S., & Pal, S. (2020). Modeling flood plain wetland transformation in consequences of flow alteration in Punarbhaba River in India and Bangladesh. Journal of Cleaner Production, 261, 120767.

    Article  Google Scholar 

  • Talukdar, S., Singha, P., Mahato, S., Shahfahad, Pal, S., Liou, Y. A., & Rahman, A. (2020). Land-use land-cover classification by machine learning classifiers for satellite observations—A review. Remote Sensing, 12(7), 1135.

    Article  Google Scholar 

  • Thitawadee, S., & Yoshihisa, M. (2018). Urban growth prediction of special economic development zone in Mae Sot district, Thailand. Eng J, 22(3), 269–277.

    Article  Google Scholar 

  • Tiwari P., Nair R., Ankinapalli P., Rao J., Hingorani P., & Gulati M. (2015) India’s reluctant urbanization: Setting the stage. In: India’s reluctant urbanization. Palgrave Macmillan, London. https://doi.org/10.1057/9781137339751_1

  • Tong, X. Y., Xia, G. S., Lu, Q., Shen, H., Li, S., You, S., & Zhang, L. (2020). Land-cover classification with high-resolution remote sensing images using transferable deep models. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2019.111322.

    Article  Google Scholar 

  • Tran, H., Tran, T., & Kervyn, M. (2015). Matthieu dynamics of land cover/land use changes in the Mekong Delta, 1973–2011: A remote sensing analysis of the Tran Van Thoi District, Ca Mau Province, Vietnam. Remote Sensing, 7(3), 2899–2925.

    Article  Google Scholar 

  • Verburg, P. H. (2006). Simulating feedbacks in land use and land cover change models. Landscape Ecology, 21(8), 1171–1183.

    Article  Google Scholar 

  • Wentz, E., Anderson, S., Fragkias, M., Netzband, M., Mesev, V., Myint, S. W., et al. (2014). Supporting global environmental change research: A review of trends and knowledge gaps in urban remote sensing. Remote Sensing, 6(5), 3879–3905.

    Article  Google Scholar 

  • Wentz, E., Nelson, D., Rahman, A., Stefanov, W., & Roy, S. (2008). Expert system classification of urban land use/cover for Delhi, India. International Journal of Remote Sensing, 29(15), 4405–4427.

    Article  Google Scholar 

  • Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M., & Wade, A. J. (2009). A review of the potential impacts of climate change on surface water quality. Hydrological Sciences Journal, 54(1), 101–123.

    Article  Google Scholar 

  • Xiao, J., Shen, Y., Ge, J., Tateishi, R., Tang, C., Liang, Y., & Huang, Z. (2006). Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landscape and Urban Planning, 75(1–2), 69–80.

    Article  Google Scholar 

  • Xie, Z., Chen, Y., Lu, D., Li, G., & Chen, E. (2019). Classification of land cover, forest, and tree species classes with ZiYuan-3 multispectral and stereo data. Remote Sensing, 11, 164.

    Article  Google Scholar 

  • Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033.

    Article  Google Scholar 

  • Xu, H. (2008). Extraction of urban built-up land features from landsat imagery using a thematic-oriented index combination technique. Photogrammetric Engineering & Remote Sensing, 73(12), 1381–1391.

    Article  Google Scholar 

  • Yesuph, A. Y., & Dagnew, A. B. (2019). Land use/cover spatiotemporal dynamics, driving forces and implications at the Beshillo catchment of the Blue Nile Basin, North Eastern Highlands of Ethiopia. Environmental Systems Research, 8, 21. https://doi.org/10.1186/s40068-0.

    Article  Google Scholar 

  • Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583–594.

    Article  Google Scholar 

Download references

Acknowledgements

The first and second authors of this study are thankful to University Grant Commission (UGC) for providing the Junior Research Fellowship (JRF) during this research work. The authors also thank USGS for making the Landsat data freely accessible. The authors are highly indebted to the learned reviewer(s) for making the scholarly comments which lead to significant improvement of the MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atiqur Rahman.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest on any financial or other issues.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, B., Shahfahad, Tayyab, M. et al. Land use/land cover (LU/LC) change dynamics using indices overlay method in Gautam Buddha Nagar District-India. GeoJournal 87, 2287–2305 (2022). https://doi.org/10.1007/s10708-021-10374-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10708-021-10374-w

Keywords

Navigation