Skip to main content
Log in

Dietary docosahexaenoic acid decreased lipid accumulation via inducing adipocytes apoptosis of grass carp, Ctenopharygodon idella

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The purpose of this study was to explore the mechanism of by which docosahexaenoic acid (DHA) inhibit the accumulation of adipose tissue lipid in grass carp (Ctenopharyngodon idella). We therefore designed two semi-purified diets, namely DHA-free (control) and DHA-supplemented, and fed them to grass carp (22.19 ± 1.76 g) for 3 and 6 weeks. DHA supplementation led to a significantly lower intraperitoneal fat index (IPFI) than that in the control group by reducing the number of adipocytes but significantly higher adipocyte size (P < 0.05). In the intraperitoneal adipose tissue, the DHA-fed group showed significantly higher peroxisome proliferator-activated receptor (PPAR)γ, CCAAT enhancer-binding protein (C/EBP)α, and sterol regulatory element-binding protein (SREBP)1c mRNA expression levels at both 3 and 6 weeks (P < 0.05). However, the ratio of the expression levels of B cell leukemia 2 (Bcl-2) and Bcl-2-associated X protein (Bax) was significantly lower in the DHA-fed group than in the control group (P < 0.05), and the protein expression levels of the apoptosis-related proteins caspase 3, caspase 8, and caspase 9 were also significantly higher (P < 0.05). Overall, although DHA promotes lipid synthesis, it is more likely that DHA could suppress the lipid accumulation in adipocytes of grass carp by inducing adipocyte apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahangar P, Sam MR, Nejati V, Habibian R (2016) Treatment of undifferentiated colorectal cancer cells with fish-oil derived docosahexaenoic acid triggers caspase-3 activation and apoptosis. Journal of Cancer Research & Therapeutics 12:798

    Article  Google Scholar 

  • SMR, Lazar MA (2000) Transcriptional control of adipogenesis. Annu Rev Nutr 20:535

  • Arner P, Spalding KL (2010) Fat cell turnover in humans. Biochem Biophys Res Commun 396(1):101–104

    Article  CAS  PubMed  Google Scholar 

  • Aggoun Y (2007) Obesity, metabolic syndrome, and cardiovascular disease. Journal of Clinical Endocrinology & Metabolism 89:2595–2600

    Google Scholar 

  • Arzel J, Lopez FXM, Métailler R, Stéphan G, Viau M, Gandemer G, Guillaume J (1994) Effect of dietary lipid on growth performance and body composition of brown trout (Salmo trutta ) reared in seawater. Aquaculture 123:361–375

    Article  CAS  Google Scholar 

  • Calder PC (2012) Mechanisms of action of (n-3) fatty acids. J Nutr 142:592S

    Article  CAS  PubMed  Google Scholar 

  • Chaiyapechara S, Casten MT, Hardy RW, Dong FM (2003) Fish performance, fillet characteristics, and health assessment index of rainbow trout (Oncorhynchus mykiss) fed diets containing adequate and high concentrations of lipid and vitamin E. Aquaculture 219:715–738

    Article  CAS  Google Scholar 

  • Cowey CB, Cho CY (1993) Nutritional requirements of fish. Proc Nutr Soc 52:417

    Article  CAS  PubMed  Google Scholar 

  • Dias J, Alvarez MJ, Diez A, Arzel J, Corraze G, Bautista JM, Kaushik SJ (1998) Regulation of hepatic lipogenesis by dietary protein/energy in juvenile European seabass (Dicentrarchus labrax). Aquaculture 161:169–186

    Article  CAS  Google Scholar 

  • Du ZY, Clouet P, Huang LM et al (2008) Utilization of different dietary lipid sources at high level in herbivorous grass carp (Ctenopharyngodon idella): mechanism related to hepatic fatty acid oxidation [J]. Aquac Nutr 14(1):77–92

    Article  CAS  Google Scholar 

  • Fajas L, Fruchart JC, Auwerx J (1998) Transcriptional control of adipogenesis. Curr Opin Cell Biol 10:165–173

    Article  CAS  PubMed  Google Scholar 

  • Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Frayn KN (2002) Adipose tissue as a buffer for daily lipid flux. Diabetologia 45:1201–1210

    Article  CAS  PubMed  Google Scholar 

  • Frayn KN, Arner P, Ykijärvinen H (2006) Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays Biochem 42:89–103

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Liang XF, Fang L, Yuan X, Zhou Y, Zhang J, Li B (2015) Effects of dietary non-protein energy source levels on growth performance, body composition and lipid metabolism in herbivorous grass carp (Ctenopharyngodon idella Val.) Aquac Res 46:1197–1208

    Article  CAS  Google Scholar 

  • Hanada H, Morikawa K, Hirota K, Nonaka M, Umehara Y (2011) Induction of apoptosis and lipogenesis in human preadipocyte cell line by n-3 PUFAs. Cell Biol Int 35:51–59

    CAS  PubMed  Google Scholar 

  • Hernández-Cruz CM, Mesa-Rodríguez A, Betancor M, Haroun-Izquierdo A, Izquierdo M, Benítez-Santana T, Torrecillas S, Roo J (2015) Growth performance and gene expression in gilthead sea bream (Sparus aurata) fed microdiets with high docosahexaenoic acid and antioxidant levels. Aquac Nutr 21:881–891

    Article  Google Scholar 

  • Huang TS, Todorčević M, Ruyter B, Torstensen B (2010) Altered expression of CCAAT/enhancer binding protein and FABP11 genes during adipogenesis in vitro in Atlantic salmon (Salmo salar). Aquac Nutr 16:72–80

    Article  CAS  Google Scholar 

  • Jean OC, Lydia L, Cawood TJ, Anna K, Niamh N, Justin G, Aiden MC, Cliona OF, Donal OS (2010) The relationship of omental and subcutaneous adipocyte size to metabolic disease in severe obesity. PLoS One 5:e9997

    Article  Google Scholar 

  • Jeong S, Jing K, Kim N, Shin S, Kim S, Song KS, Heo JY, Park JH, Seo KS, Han J (2014) Docosahexaenoic acid-induced apoptosis is mediated by activation of mitogen-activated protein kinases in human cancer cells. BMC Cancer 14:481

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji H, Cao YZ, Liu P, Su SS, Lin YQ, Cao FY, Oku H, Zhou JS, Ye YT (2009) Effect of dietary HUFA on the lipid metabolism in grass carp Ctenopharymgodon idellus. Acta Hydrobiol Sinica 33:881–889

    Article  CAS  Google Scholar 

  • Ji H, Li J, Liu P (2011) Regulation of growth performance and lipid metabolism by dietary n-3 highly unsaturated fatty acids in juvenile grass carp, Ctenopharyngodon idellus. Comparative Biochemistry & Physiology Part B 159:49–56

    Article  Google Scholar 

  • Jing K, Song KS, Shin S, Kim N, Jeong S, Oh HR, Park JH, Seo KS, Heo JY, Han J (2011) Docosahexaenoic acid induces autophagy through p53/AMPK/mTOR signaling and promotes apoptosis in human cancer cells harboring wild-type p53. Autophagy 7:1348–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SM, Jeon IG, Lee JY (2002) Effects of digestible protein and lipid levels in practical diets on growth, protein utilization and body composition of juvenile rockfish ( Sebastes Schlegeli ). Aquaculture 211:227–239

    Article  CAS  Google Scholar 

  • Liu P, Ji H, Li C, Tian J, Wang Y, Yu P (2015) Ontogenetic development of adipose tissue in grass carp (Ctenopharyngodon idellus). Fish Physiol Biochem 41:1–12

    Article  PubMed  Google Scholar 

  • Liu P, Li C, Huang J, Ji H (2014) Regulation of adipocytes lipolysis by n-3 HUFA in grass carp (Ctenopharyngodon idellus) in vitro and in vivo. Fish Physiol Biochem 40:1447–1460

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lovell T, (1989) Nutrition and feeding of fish[M]. New York, Van Nostrand Reinhold

  • Ma JJ, Shao QJ, Xu ZR et al (2009) Effects of dietary n-3 HUFA on growth performance and lipid metabolism in juvenile black sea bream Sparus macrocephalus[J]. J Fish China 33(4):639–649

    CAS  Google Scholar 

  • Metcalfe LC, Schmitz AL, (1961) A new method for saponification and methylation of fatty acids[J]. Anal Chem 33:363-372

  • Kanazawa A (1997) Effects of docosahexaenoic acid and phospholipids on stress tolerance of fish. Aquaculture 155:129–134

    Article  CAS  Google Scholar 

  • Mayer B, Oberbauer R (2003) Mitochondrial regulation of apoptosis [J]. Physiology 18(3):89–94

    Article  CAS  Google Scholar 

  • Notarnicola M, Messa C, Refolo MG, Tutino V, Miccolis A, Caruso MG (2011) Polyunsaturated fatty acids reduce fatty acid synthase and hydroxy-methyl-glutaryl CoA-reductase gene expression and promote apoptosis in HepG2 cell line. Lipids Health Dis 10:1

    Article  Google Scholar 

  • Osman OS, Selway JL, Stocker CJ, O’Dowd JF, Cawthorne MA, Arch JR, Jassim S, Langlands K (2013) A novel automated image analysis method for accurate adipocyte quantification. Adipocyte 2:160–164

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen ED, Hsu C-H, Wang X, Sakai S, Freeman MW, Gonzalez FJ, Spiegelman BM (2002) C/EBPα induces adipogenesis through PPARγ: a unified pathway. Genes Dev 16:22–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruzickova J, Rossmeisl M, Prazak T, Flachs P, Sponarova J, Vecka M, Tvrzicka E, Bryhn M, Kopecky J (2004) Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue. Lipids 39:1177

    Article  CAS  PubMed  Google Scholar 

  • Skender B, Hofmanová J, Slavík J, Jelínková I, Machala M, Moyer MP, Kozubík A, Hyršlová VA (2014) DHA-mediated enhancement of TRAIL-induced apoptosis in colon cancer cells is associated with engagement of mitochondria and specific alterations in sphingolipid metabolism. Biochim Biophys Acta 1841:1308–1317

    Article  CAS  PubMed  Google Scholar 

  • Stowell SL, Iii DMG (1992) Effects of dietary pantethine and lipid levels on growth and body composition of channel catfish, Ictalurus punctatus. Aquaculture 108:177–188

    Article  CAS  Google Scholar 

  • Tian JJ, Lu RH, Ji H, Sun J, Li C, Liu P, Lei CX, Chen LQ, Du ZY (2015) Comparative analysis of the hepatopancreas transcriptome of grass carp (Ctenopharyngodon idellus) fed with lard oil and fish oil diets. Gene 565:192–200

    Article  CAS  PubMed  Google Scholar 

  • Todorčević M, Hodson L (2016) The effect of marine derived n-3 fatty acids on adipose tissue metabolism and function. J Clin Med 5:3

    Google Scholar 

  • Todorčević M, Kjaer MA, Djaković N, Vegusdal A, Torstensen BE, Ruyter B (2009) N-3 HUFAs affect fat deposition, susceptibility to oxidative stress, and apoptosis in Atlantic salmon visceral adipose tissue. Comparative Biochemistry & Physiology Part B Biochemistry & Molecular Biology 152:135–143

    Article  Google Scholar 

  • Takle H, McLeod A, Andersen O (2006) Cloning and characterization of the executioner caspases 3, 6, 7 and Hsp70 in hyperthermic Atlantic salmon (Salmo salar) embryos. Comp Biochem Physiol B: Biochem Mol Biol 144(2):188–198

    Article  Google Scholar 

  • Tsuzuki T, Kawakami Y, Nakagawa K, Miyazawa T (2006) Conjugated docosahexaenoic acid inhibits lipid accumulation in rats. Journal of Nutritional Biochemistry 17:518–524

    Article  CAS  PubMed  Google Scholar 

  • Villalta M, Estévez A, Bransden MP, Bell JG (2005) The effect of graded concentrations of dietary DHA on growth, survival and tissue fatty acid profile of Senegal sole (Solea senegalensis) larvae during the Artemia feeding period. Aquaculture 249:353–365

    Article  CAS  Google Scholar 

  • Wan J, Xiao Z, Chao S, Xiong S, Gan X, Qiu X, Xu C, Ma Y, Tu X (2014) Pioglitazone modulates the proliferation and apoptosis of vascular smooth muscle cells via peroxisome proliferators-activated receptor-gamma. Diabetology & Metabolic Syndrome 6:101

    Article  Google Scholar 

  • Wang AS, Xu CW, Xie HY, Yao AJ, Shen YZ, Wan JJ, Zhang HQ, Fu JF, Chen ZM, Zou ZQ (2016) DHA induces mitochondria-mediated 3T3-L1 adipocyte apoptosis by down-regulation of Akt and ERK. J Funct Foods 21:517–524

    Article  Google Scholar 

  • Wang X, Huang M, Wang Y (2012) The effect of insulin, TNFα and DHA on the proliferation, differentiation and lipolysis of preadipocytes isolated from large yellow croaker (Pseudosciaena crocea R.) PloS One 7:e48069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe T (2007) Importance of docosahexaenoic acid in marine larval fish. J World Aquacult Soc 24:152–161

    Article  Google Scholar 

  • Yang C, Zhang GP, Chen YN, Meng FL, Liu SS, Gong SP (2016) Effects of docosahexaenoic acid on cell apoptosis, invasion and migration of cervical cancer cells in vitro. Journal of Southern Medical University 36:848–856

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported financially by the National Natural Science Foundation of China (31372538). We thank Ankang Fisheries Experimental and Demonstration Station (AFEDS) of the Northwest Agriculture and Forestry University for the experimental fish.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, A., Lei, Cx., Tian, Jj. et al. Dietary docosahexaenoic acid decreased lipid accumulation via inducing adipocytes apoptosis of grass carp, Ctenopharygodon idella . Fish Physiol Biochem 44, 197–207 (2018). https://doi.org/10.1007/s10695-017-0424-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-017-0424-6

Keywords

Navigation