Skip to main content
Log in

Inhibitory neurotransmitter serotonin and excitatory neurotransmitter dopamine both decrease food intake in Chinese perch (Siniperca chuatsi)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Aminergic neurotransmitters play important roles in the regulation of food intake. However, their effects on feeding in fish have been less explored and still unclear. In the present study, the effects of serotonin (5-HT) and dopamine (DA) on food intake were evaluated through intraventricular (ICV) administration in Chinese perch (Siniperca chuatsi) and the mRNA expression levels of neuropeptide Y (NPY), agouti gene-related protein (AgRP), and pro-opiomelanocortin (POMC) were detected. At 1 h post-injection, 5-HT significantly decreased food intake in a dose-dependent manner. The mRNA expression of NPY and AgRP were significantly decreased (p < 0.05), whereas the mRNA expression of POMC was significantly increased (p < 0.05), suggesting the involvement of NPY, AgRP, and POMC in inhibitory action of 5-HT on food intake in Chinese perch. DA significantly decreased (p < 0.05) food intake and AgRP mRNA expression at 1 h post-injection, indicating the inhibitory effect of DA on food intake might be mediated through AgRP. This might shed new light on the regulation of food intake in Chinese perch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahlenius S, Larsson K, Svensson L, Hjorth S, Carlsson A, Lindberg P, Wikström H, Sanchez D, Arvidsson LE, Hacksell U, Nilsson JLG (1981) Effects of a new type of 5-HT receptor agonist on male rat sexual behavior. Pharmacol Biochem Behav 15:785–792

    Article  CAS  PubMed  Google Scholar 

  • Beninger RJ (1983) The role of dopamine in locomotor activity and learning. Brain Res 287:173–196

    Article  CAS  PubMed  Google Scholar 

  • Berthoud HR (2002) Multiple neural systems controlling food intake and body weight. Neurosci. Biobehav. Rev. 26:393–428

    Article  PubMed  Google Scholar 

  • Blundell JE (1976) Is there a role for serotonin (5-hydroxytryptamine) in feeding? Int J Obes 1:15–42

    Google Scholar 

  • Chiang IK (1959) On the biology of mandarin fish, Siniperca chuatsi of Liang-Tze Lake. Acta Hydrobiol Sinica 3:375–385

    Google Scholar 

  • Choi SJ, Blake V, Cole S, Fernstrom JD (2006) Effects of chronic fenfluramine administration on hypothalamic neuropeptide mRNA expression. Brain Res 1087:83–86

    Article  CAS  PubMed  Google Scholar 

  • Cone RD (1999) The central melanocortin system and energy homeostasis. Trends Endocrin Metab 10:211–216

    Article  CAS  Google Scholar 

  • Currie PJ, Coiro CD, Niyomchai T, Farahmand F (2002) Hypothalamic paraventricular 5-hydroxytryptamine: receptor-specific inhibition of NPY-stimulated eating and energy metabolism. Pharmacol Biochem Behav 71:709–716

    Article  CAS  PubMed  Google Scholar 

  • de Almeida RM, Ferrari PF, Parmigiani S, Miczek KA (2005) Escalated aggressive behavior: dopamine, serotonin and GABA. Eur J Pharmacol 526:51–64

    Article  PubMed  Google Scholar 

  • de Pedro N, Pinillos ML, Valenciano AI, Alonso-Bedate M, Delgado MJ (1998a) Inhibitory effect of serotonin on feeding behavior in goldfish: involvement of CRF. Peptides 19:505–511

    Article  PubMed  Google Scholar 

  • de Pedro N, Delgado MJ, Alonso-Bedate M (1998b) α 1 -Adrenergic and dopaminergic receptors are involved in the anoretic effect of corticotropin-releasing factor in goldfish. Life Sci 62:1801–1808

    Article  PubMed  Google Scholar 

  • de Pedro N, Delgado MJ, Alonso-Bedate M (2001) Fasting and hypothalamic catecholamines in goldfish. J Fish Biol 58:1404–1413

    Article  Google Scholar 

  • de Pedro N, Delgado MJ, Gancedo B, Alonso-Bedate M (2003) Changes in glucose, glycogen, thyroid activity and hypothalamic catecholamines in tench by starvation and refeeding. J Comp Physiol B 173:475–481

    Article  PubMed  Google Scholar 

  • Fetissov SO, Meguid MM, Chen C, Miyata G (2000) Synchronized release of dopamine and serotonin in the medial and lateral hypothalamus of rats. Neuroscience 101:657–663

    Article  CAS  PubMed  Google Scholar 

  • Fletcher PJ (1988) Increased food intake in satiated rats induced by the 5-HT antagonists methysergide, metergoline and ritanserin. Psychopharmacology 96:237–242

    Article  CAS  PubMed  Google Scholar 

  • Gillard ER, Dang DQ, Stanley BG (1993) Evidence that neuropeptide Y and dopamine in the perifornical hypothalamus interact antagonistically in the control of food intake. Brain Res 628:128–136

    Article  CAS  PubMed  Google Scholar 

  • Greene SB, Mathews D, Hollingsworth EM, Garbin CP (1985) Behavioral effects of pergolide mesylate on food intake and body weight. Pharmacol Biochem Behav 23:161–167

    Article  CAS  PubMed  Google Scholar 

  • He S, Liang XF, Sun J, Li L, Yu Y, Huang W, Qu CM, Cao L, Bai XL, Tao YX (2013) Insights into food preference in hybrid F1 of siniperca chuatsi (♀) × siniperca scherzeri (♂) mandarin fish through transcriptome analysis. BMC Genomics 14:601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedlund PB, Kelly L, Mazur C, Lovenberg T, Sutcliffe JG, Bonaventure P (2004) 8-OH-DPAT acts on both 5-HT1A and 5-HT7 receptors to induce hypothermia in rodents. Eur J Pharmacol 487:125–132

    Article  CAS  PubMed  Google Scholar 

  • Heisler LK, Cowley MA, Tecott LH, Fan W, Low MJ, Smart JL, Rubinstein M, Tatro JB, Marcus JN, Holstege H, Lee CE, Cone RD, Elmquist JK (2002) Activation of central melanocortin pathways by fenfluramine. Science 297:609–611

    Article  CAS  PubMed  Google Scholar 

  • Holmes A, Yang RJ, Lesch KP, Crawley JN, Murphy DL (2003) Mice lacking the serotonin transporter exhibit 5-HT (1A) receptor-mediated abnormalities in tests for anxiety-like behavior. Neuropsychopharmacology 28:2077–2088

    Article  CAS  PubMed  Google Scholar 

  • Johansson V, Winberg S, Björnsson BT (2005) Growth hormone-induced stimulation of swimming and feeding behaviour of rainbow trout is abolished by the D1 dopamine antagonist SCH23390. Gen Comp Endocrinol 141:58–65

    Article  CAS  PubMed  Google Scholar 

  • Jouvet M (1999) Sleep and serotonin: an unfinished story. Neuropsychopharmacology 21:24S–27S

    CAS  PubMed  Google Scholar 

  • Lam DD, Garfield AS, Marston OJ, Shaw J, Heisler LK (2010) Brain serotonin system in the coordination of food intake and body weight. Pharmacol Biochem Behav 97:84–91

    Article  CAS  PubMed  Google Scholar 

  • Leal E, Fernándezdurán B, Agulleiro MJ, Condesiera M, Míguez JM, Cerdáreverter JM (2013) Effects of dopaminergic system activation on feeding behavior and growth performance of the sea bass (Dicentrarchus labrax): a self-feeding approach. Horm Behav 64:113–121

    Article  CAS  PubMed  Google Scholar 

  • Leibowitz SF, Rossakis C (1979) Mapping study of brain dopamine- and epinephrine-sensitive sites which cause feeding suppression in the rat. Brain Res 172:101–113

    Article  CAS  PubMed  Google Scholar 

  • Lenard NR, Berthoud HR (2008) Central and peripheral regulation of food intake and physical activity: pathways and genes. Obesity 16:S11–S22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang XF, Kiu JK, Huang BY (1998) The role of sense organs in the feeding behaviour of Chinese perch. J Fish Biol 52:1058–1067

    Article  Google Scholar 

  • Lindefors N, Brene S, Herrera-Marschitz M, Persson H (1990) Neuropeptide gene expression in brain is differentially regulated by midbrain dopamine neurons. Exp Brain Res 80:489–500

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Luquet S, Perez FA, Hnasko TS, Palmiter RD (2005) NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310:683–685

    Article  CAS  PubMed  Google Scholar 

  • Mancebo MJ, Ceballos FC, Pérez-Maceira J, Aldegunde M (2013) Hypothalamic neuropeptide Y (NPY) gene expression is not affected by central serotonin in the rainbow trout (Oncorhynchus mykiss). Comp Biochem Phys A 166:186–190

    Article  CAS  Google Scholar 

  • Mennigen JA, Harris EA, Chang JP, Moon TW, Trudeau VL (2009) Fluoxetine affects weight gain and expression of feeding peptides in the female goldfish brain. Regul Pept 155:99–104

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA, Fish EW, Bold JFD, Almeida RMD (2002) Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and γ-aminobutyric acid systems. Psychopharmacology 163:434–458

    Article  CAS  PubMed  Google Scholar 

  • Munro AD (1986) Effects of melatonin, serotonin, and naloxone on aggression in isolated cichlid fish (Aequidens pulcher). J Pineal Res 3:257–262

    Article  CAS  PubMed  Google Scholar 

  • Nieoullon A (2002) Dopamine and the regulation of cognition and attention. Prog Neurobiol 67:53–83

    Article  CAS  PubMed  Google Scholar 

  • Nieoullon A, Coquerel A (2003) Dopamine: a key regulator to adapt action, emotion, motivation and cognition. Curr Opin Neurol 16:S3–S9

    Article  CAS  PubMed  Google Scholar 

  • Ortega VA, Lovejoy DA, Bernier NJ (2013) Appetite-suppressing effects and interactions of centrally administered corticotropin-releasing factor, urotensin I and serotonin in rainbow trout (Oncorhynchus mykiss). Front Neurosci 7:196–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Maceira JJ, Otero-Rodiño C, Mancebo MJ, Soengas JL, Aldegunde M (2016) Food intake inhibition in rainbow trout induced by activation of serotonin 5-HT2C receptors is associated with increases in POMC, CART and CRF mRNA abundance in hypothalamus. J Comp Physiol B 186:313–321

    Article  PubMed  Google Scholar 

  • Richards MP (2003) Genetic regulation of feed intake and energy balance in poultry. Poult Sci 82:907–916

    Article  CAS  PubMed  Google Scholar 

  • Rubio VC, Sánchez-Vázquez FJ, Madrid JA (2006) Oral serotonin administration affects the quantity and the quality of macronutrients selection in European sea bass Dicentrarchus labrax L. Physiol Behav 87:7–15

    Article  CAS  PubMed  Google Scholar 

  • Ruddick JP, Evans AK, Nutt DJ, Lightman SL, Rook GA, Lowry CA (2006) Tryptophan metabolism in the central nervous system: medical implications. Expert Rev Mol Med 8:1–27

    Article  PubMed  Google Scholar 

  • Salamone JD, Mahan K, Rogers S (1993) Ventrolateral striatal dopamine depletions impair feeding and food handling in rats. Pharmacol Biochem Behav 44:605–610

    Article  CAS  PubMed  Google Scholar 

  • Satake N (1979) Melatonin mediation in sedative effect of serotonin in goldfish. Physiol Behav 22:817–819

    Article  CAS  PubMed  Google Scholar 

  • Schwartz MW, Woods SC, Jr PD, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671

    Article  CAS  PubMed  Google Scholar 

  • Siddhuraju P, Becker K (2002) Effect of phenolic nonprotein amino acid L-dopa (L-3,4-dihydroxyphenylalanine) on growth performance, metabolic rates and feed nutrient utilization of common carp (Cyprinus carpio L.) Aquac Nutr 6:69–77

    Article  Google Scholar 

  • Steffens SM, Casas DC, Milanez BC, Freitas CG, Paschoalini MA, Marino-Neto J (1997) Hypophagic and dipsogenic effects of central 5-HT injections in pigeons. Brain Res Bull 44:681–688

    Article  CAS  PubMed  Google Scholar 

  • Szczypka MS, Rainey MA, Kim DS, Alaynick WA, Marck BT, Matsumoto AM, Palmiter RD (1999) Feeding behavior in dopamine-deficient mice. Proc Natl Acad Sci U S A 96:12138–12143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Towell A, Willner P, Muscat R (1988) Apomorphine anorexia: the role of dopamine receptors in the ventral forebrain. Psychopharmacology 96:135–141

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele J, Preter KD, Pattyn F, Poppe B, Roy NV, Paepe AD, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–12

    Article  Google Scholar 

  • Volkow ND, Wang GJ, Baler RD (2011) Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci 15:37–46

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Aulakh CS, Hill JL, Murphy DL (1988) Fawn hooded rats are subsensitive to the food intake suppressant effects of 5-HT agonists. Psychopharmacology 94:558–562

    Article  CAS  PubMed  Google Scholar 

  • Weiger WA (1997) Serotonergic modulation of behaviour: a phylogenetic overview. Biol Rev Camb Philos Soc 72:61–95

    Article  CAS  PubMed  Google Scholar 

  • Yang ZJ, Meguid MM, Chai JK, Chen C, Oler A (1997) Bilateral hypothalamic dopamine infusion in male Zucker rat suppresses feeding due to reduced meal size. Pharmacol Biochem Behav 58:631–635

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (2014CB138601) and the National Natural Science Foundation of China (31602131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-Fang Liang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, YH., Li, L., Liang, XF. et al. Inhibitory neurotransmitter serotonin and excitatory neurotransmitter dopamine both decrease food intake in Chinese perch (Siniperca chuatsi). Fish Physiol Biochem 44, 175–183 (2018). https://doi.org/10.1007/s10695-017-0422-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-017-0422-8

Keywords

Navigation