Skip to main content
Log in

Within-season variation in sexual selection on flight performance and flight-related traits in a damselfly

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

While selection is a key mechanism of evolution, our understanding of within-season variation in sexual selection remains limited. Here, we studied within-season sexual selection on two key performance traits, flight speed and flight endurance, and a set of morphological and physiological phenotypic traits in a natural population of the territorial damselfly Chalcolestes viridis. We applied a path analysis approach to address whether the flight-related traits affected mating success directly or indirectly through their effect on the flight performance traits, and whether these selection patterns differed between the first and second half of the reproductive season. While some trait means did not differ between both parts of the season (flight speed, wing loading and non-allometric wing shape), most traits showed within-season differences (flight endurance, fat content, flight muscle ratio, wing centroid size, body mass and the allometric wing shape). Despite the within-season temporal differences in flight endurance, sexual selection consistently favoured males with a higher flight endurance. None of the detected patterns of sexual selection on the flight-related traits were consistently significant in both periods: while we detected selection on wing loading and wing centroid size in the first half of the season, we detected selection on body mass in the second half of the season. More studies focusing on understudied traits such as performance traits are needed to refine our knowledge of the temporal dynamics of selection patterns in nature. This is important to arrive at a better understanding of the adaptive evolutionary dynamics of traits in natural populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams DC, Otárola-Castillo E (2013) geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol Evol 4:393–399

    Article  Google Scholar 

  • Adolph SC, Pickering T (2008) Estimating maximum performance: effects of intraindividual variation. J Exp Biol 211:1336–1343

    Article  PubMed  Google Scholar 

  • Agüero-Pelegrin M, Ferreras-Romero M, Corbet PS (1999) The life cycle of Lestes viridis (Odonata: Lestidae) in two seasonal streams of the Sierra Morena Mountains (southern Spain). Aquat Insect 21:187–196

    Article  Google Scholar 

  • Almbro M, Kullberg C (2008) Impaired escape flight ability in butterflies due to low flight muscle ratio prior to hibernation. J Exp Biol 211:24–28

    Article  PubMed  Google Scholar 

  • Andersson M (1994) Sexual selection. Princeton University Press, Princeton

    Google Scholar 

  • Bell G (2010) Fluctuating selection: the perpetual renewal of adaptation in variable environments. Philos Trans R Soc B 365:87–97

    Article  Google Scholar 

  • Berwaerts K, Van Dyck H, Aerts P (2002) Does flight morphology relate to flight performance? An experimental test with the butterfly Pararge aegeria. Funct Ecol 16:484–491

    Article  Google Scholar 

  • Blanckenhorn WU, Morf C, Mühlhäuser C, Reusch T (1999) Spatiotemporal variation in selection on body size in the dung fly Sepsis cynipsea. J Evol Biol 12:563–576

    Article  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917

    Article  CAS  Google Scholar 

  • Bomphrey RJ, Nakata T, Henningsson P, Lin HT (2016) Flight of the dragonflies and damselflies. Philos Trans R Soc B 371:20150389

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein, utilizing the principle of protein-dye landing. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Byrne DN (1988) Relationship between wing loading, wing beat frequency and body mass in homopterous insects. J Exp Biol 135:9–23

    Google Scholar 

  • Careau V, Garland T (2012) Performance, personality, and energetics: correlation, causation, and mechanism. Physiol Biochem Zool 85:543–571

    Article  PubMed  Google Scholar 

  • Conner JK, Hartl DL (2004) A primer of ecological genetics. Sinauer Associates, Sunderland

    Google Scholar 

  • Cordero A (1988) Estudio ecológico de una población de Lestes viridis Vander Linden, 1825 (Zygoptera, Lestidae). Limnética 4:1–8

    Google Scholar 

  • Crompton B, Thomason JC, McLachlan A (2003) Mating in a viscous universe: the race is to the agile, not to the swift. Proc R Soc Lond B Biol Sci 270:1991–1995

    Article  Google Scholar 

  • De Block M, Stoks R (2004) Life-history variation in relation to time constraints in a damselfly. Oecologia 140:68–75

    Article  PubMed  Google Scholar 

  • De Block M, Stoks R (2007) Flight-related body morphology shapes mating success in a damselfly. Anim Behav 74:1093–1098

    Article  Google Scholar 

  • Debat V, Béagin M, Legout H, David JR (2003) Allometric and nonallometric components of Drosophila wing shape respond differently to developmental temperature. Evolution 57:2773–2784

    Article  PubMed  Google Scholar 

  • Dijkstra K-DB, Lewington R (2006) Field guide to the dragonflies of Britain and Europe. British Wildlife Publishing, Gillingham

    Google Scholar 

  • Dingemanse NJ, Dochtermann N, Wright J (2010) A method for exploring the structure of behavioural syndromes to allow formal comparison within and between datasets. Anim Behav 79:439–450

    Article  Google Scholar 

  • Dreyer W (1978) Etho-ökologische untersuchungen an Lestes viridis (Vander Linden) (Zygoptera: Lestidae). Odonatologica 7:309–322

    Google Scholar 

  • Fitzstephens DM, Getty T (2000) Colour, fat and social status in male damselflies, Calopteryx maculata. Anim Behav 60:851–855

    Article  CAS  PubMed  Google Scholar 

  • Gillespie SR, Scarlett Tudor M, Moore AJ, Miller CW (2014) Sexual selection is influenced by both developmental and adult environments. Evolution 68:3421–3432

    Article  PubMed  Google Scholar 

  • Gosden TP, Svensson EI (2008) Spatial and temporal dynamics in a sexual selection mosaic. Evolution 6:845–856

    Article  Google Scholar 

  • Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Grether GF (1996) Sexual selection and survival selection on wing coloration and body size in the rubyspot damselfly Hetaerina americana. Evolution 50:1939–1948

    Article  Google Scholar 

  • Gribbin SD, Thompson DJ (1991) The effects of size and residency on territorial disputes and short-term mating success in the damselfly Pyrrhosoma nymphula (Sulzer) (Zygoptera: Coenagrionidae). Anim Behav 41:689–695

    Article  Google Scholar 

  • Gyulavári HA, Therry L, Dévai GY, Stoks R (2014) Sexual selection on flight endurance, flight-related morphology and physiology in a scrambling damselfly. Evol Ecol 28:639–654

    Article  Google Scholar 

  • Hu L, Bentler PM (1999) Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Model 6:1–55

    Article  Google Scholar 

  • Husak JF, Fox SF (2008) Sexual selection on locomotor performance. Evol Ecol Res 10:213–228

    Google Scholar 

  • Husak JF, Fox SF, Van Den Bussche RA (2008) Faster male lizards are better defenders not sneakers. Anim Behav 75:1725–1730

    Article  Google Scholar 

  • Irschick DJ, Herrel A, Vanhooydonck B, Damme RV (2007) A functional approach to sexual selection. Funct Ecol 21:621–626

    Article  Google Scholar 

  • Irschick DJ, Meyers JJ, Husak JF, Le Galliard J (2008) How does selection operate on whole-organism functional performance capacities? A review and synthesis. Evol Ecol Res 10:177–196

    Google Scholar 

  • Kasumovic MM, Bruce MJ, Andrade MCB, Herberstein ME (2008) Spatial and temporal demographic variation drives within-season fluctuations in sexual selection. Evolution 62:2316–2325

    Article  PubMed  Google Scholar 

  • Kingsolver JG, Diamond SE (2011) Phenotypic selection in natural populations: what limits directional selection? Am Nat 177:346–357

    Article  PubMed  Google Scholar 

  • Kingsolver JG, Schemske DW (1991) Path analyses of selection. Trends Ecol Evol 6:276–280

    Article  CAS  PubMed  Google Scholar 

  • Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hill CE et al (2001) The strength of phenotypic selection in natural populations. Am Nat 157:245–261

    Article  CAS  PubMed  Google Scholar 

  • Kodric-Brown A, Nicoletto PF (1993) The relationship between physical condition and social status in pupfish Cyprinodon pecosensis. Anim Behav 46:1234–1236

    Article  Google Scholar 

  • Lailvaux SP, Irschick DJ (2006) A functional perspective on sexual selection: insights and future prospects. Anim Behav 72:263–273

    Article  Google Scholar 

  • Lee YH, Lin CP (2012) Morphometric and genetic differentiation of two sibling gossamer–wing damselflies, Euphaea formosa and E. yayeyamana, and adaptive trait divergence in subtropical East Asian islands. J Insect Sci 12:53

    PubMed  PubMed Central  Google Scholar 

  • Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk 104:116–121

    Article  Google Scholar 

  • Marden JH (1989) Bodybuilding dragonflies: costs and benefits of maximising flight muscle. Physiol Zool 62:505–521

    Article  Google Scholar 

  • Marden JH, Chai P (1991) Aerial predation and butterfly design: how palatability, mimicry, and the need for evasive flight constrain mass allocation. Am Nat 138:15–36

    Article  Google Scholar 

  • Marden JH, Waage JK (1990) Escalated damselfly territorial contests are energetic wars of attrition. Anim Behav 39:954–959

    Article  Google Scholar 

  • McLain DK (1992) Population density and the intensity of sexual selection on body length in spatially or temporally restricted natural populations of a seed beetle. Behav Ecol Sociobiol 30:347–356

    Article  Google Scholar 

  • Miller CW, Svensson EI (2014) Sexual selection in complex environments. Annu Rev Entomol 59:427–445

    Article  CAS  PubMed  Google Scholar 

  • Minden V, Scherber C, Cebrián Piqueras MA, Trinogga J, Trenkamp A, Mantilla-Contreras J, Lienin P, Kleyer M (2016) Consistent drivers of plant biodiversity across managed ecosystems. Philos Trans R Soc B 371:20150284

    Article  Google Scholar 

  • Moore AJ (1990) The evolution of sexual dimorphism by sexual selection: the separate effects of intrasexual selection and intersexual selection. Evolution 44:315–331

    Article  Google Scholar 

  • Morrissey MB, Hadfield JD (2012) Directional selection in temporally replicated studies is remarkably consistent. Evolution 66:435–442

    Article  PubMed  Google Scholar 

  • Moya-Laraño J, El-Sayyid MET, Fox CW (2007) Smaller beetles are better scramble competitors at cooler temperatures. Biol Lett 3:475–478

    Article  PubMed  PubMed Central  Google Scholar 

  • Nespolo RF, Scheihing RA, Artacho P (2013) Sexual selection on locomotor performance in the calanoid copepod Tigriopus californicus. Evol Ecol Res 15:557–566

    Google Scholar 

  • Outomuro D, Johansson F (2011) The effects of latitude, body size, and sexual selection on wing shape in a damselfly. Biol J Linn Soc 102:263–274

    Article  Google Scholar 

  • Outomuro D, Rodríguez-Martínez S, Karlsson A, Johansson F (2014) Male wing shape differs between condition-dependent alternative reproductive tactics in territorial damselflies. Anim Behav 91:1–7

    Article  Google Scholar 

  • Outomuro D, Söderquist L, Nilsson-Örtman V, Cortázar-Chinarro M, Lundgren C, Johansson F (2016) Antagonistic natural and sexual selection on wing shape in a scrambling damselfly. Evolution 70:1582–1595

    Article  PubMed  Google Scholar 

  • Plaistow S, Siva-Jothy MT (1996) Energetic constraints and male mate-securing tactics in the damselfly Calopteryx splendens xanthostoma (Charpentier). Proc R Soc Lond B 263:1233–1239

    Article  Google Scholar 

  • Plaistow SJ, Tsubaki Y (2000) A selective trade-off for territoriality and non-territoriality in the polymorphic damselfly Mnais costalis. Proc R Soc Lond B Biol Sci 267:969–975

    Article  CAS  Google Scholar 

  • Punzalan D, Rodd FH, Rowe L (2010) Temporally variable multivariate sexual selection on sexually dimorphic traits in a wild insect population. Am Nat 175:401–414

    Article  PubMed  Google Scholar 

  • Purse BV, Thompson DJ (2005) Lifetime mating success in a marginal population of a damselfly, Coenagrion mercuriale. Anim Behav 69:1303–1315

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rohlf FJ (2010) tpsDig Version 2.16. Ecology and evaluation. SUNY, Stony Brook

    Google Scholar 

  • Rosseel Y (2012) Lavaan: an R package for structural equation modeling. J Stat Softw 48:1–36

    Article  Google Scholar 

  • Samejima Y, Tsubaki Y (2010) Body temperature and body size affect flight performance in a damselfly. Behav Ecol Sociobiol 64:685–692

    Article  Google Scholar 

  • Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113

    Article  Google Scholar 

  • Shipley B (2002) Cause and correlation in biology: a user’s guide to path analysis, structural equations and causal inference. Cambridge University Press, Cambridge

    Google Scholar 

  • Siepielski AM, DiBattista JD, Carlson SM (2009) It’s about time: the temporal dynamics of phenotypic selection in the wild. Ecol Lett 12:1261–1276

    Article  PubMed  Google Scholar 

  • Siepielski AM, DiBattista JD, Evans JA, Carlson SM (2011) Differences in the temporal dynamics of phenotypic selection among fitness components in the wild. Proc R Soc Lond B 278:1572–1580

    Article  Google Scholar 

  • Sinervo B, Miles DB, Frankino WA, Klukowski M, DeNardo DF (2000) Testosterone, endurance, and Darwinian fitness: natural and sexual selection on the physiological bases of alternative male behaviors in side-blotched lizards. Horm Behav 38:222–233

    Article  CAS  PubMed  Google Scholar 

  • Snell-Rood EC, Espeset A, Boser CJ, White WA, Smykalski R (2014) Anthropogenic changes in sodium affect neural and muscle development in butterflies. Proc Natl Acad Sci USA 111:10221–10226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steele DB, Siepielski AM, McPeek MA (2011) Sexual selection and temporal phenotypic variation in a damselfly population. J Evol Biol 24:1517–1532

    Article  CAS  PubMed  Google Scholar 

  • Stoks R, De Bruyn L, Matthysen E (1997) The adaptiveness of intense contact mate guarding by males of the Emerald damselfly, Lestes sponsa (Odonata, Lestidae): the male’s perspective. J Insect Behav 10:289–298

    Article  Google Scholar 

  • Strobbe F, McPeek MA, De Block M, De Meester L, Stoks R (2009) Survival selection on escape performance and its underlying phenotypic traits: a case of many-to-one mapping. J Evol Biol 22:1172–1182

    Article  CAS  PubMed  Google Scholar 

  • Suhonen J, Rantala MJ, Honkavaara J (2008) Territoriality in odonates. Dragonflies and damselflies: model organisms for ecological and evolutionary research. Oxford University Press, Oxford, pp 203–218

    Chapter  Google Scholar 

  • Swillen I, De Block M, Stoks R (2009) Morphological and physiological sexual selection targets in a territorial damselfly. Ecol Entomol 34:677–683

    Article  Google Scholar 

  • Theodorou P, Radzevičiūtė R, Settele J, Schweiger O, Murray TE, Paxton RJ (2016) Pollination services enhanced with urbanization despite increasing pollinator parasitism. Proc R Soc B 283:20160561

    Article  PubMed  PubMed Central  Google Scholar 

  • Therry L, Gyulavári HA, Schillewaert S, Bonte D, Stoks R (2014) Integrating large-scale geographic patterns in flight morphology, flight characteristics and sexual selection in a range-expanding damselfly. Ecography 37:1012–10291

    Article  Google Scholar 

  • Van Gossum H, Beirinckx K, Forbes MR, Sherratt TN (2007) Do current hypotheses explain continental and seasonal variation in female morph frequencies of the damselfly, Nehalennia irene? Biol J Linn Soc 90:501–508

    Article  Google Scholar 

  • Westermann K (2008) Sex ratio in a population of Lestes viridis: spatial and temporal variability at emergence (Odonata: Lestidae). Int J Odonatol 11:115–129

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgements

We thank the associate editor and two anonymous reviewers for their constructive feedback. HAGY received a Hungarian short-term study grant from the Balassi Institute (Campus Hungary program CHP/128-15/2013). Financial support for this research came from grants of FWO, Belspo project Speedy and the KU Leuven Centre of Excellence program PF/2010/07 to RS

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajnalka Anna Gyulavári.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1428 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gyulavári, H.A., Tüzün, N., Arambourou, H. et al. Within-season variation in sexual selection on flight performance and flight-related traits in a damselfly. Evol Ecol 31, 21–36 (2017). https://doi.org/10.1007/s10682-016-9882-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-016-9882-z

Keywords

Navigation