Skip to main content
Log in

Fine genetic mapping confers a major gene controlling leaf shape variation in watermelon

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Watermelon is an important horticultural crop in the Cucurbitaceae family, which exhibits a remarkable diversity of vegetative phenotypes. In this experimental study, two contrasted watermelon lines “natural mutant line (DW-2) with non-lobed leaves and the wild-type line (DG-2) with lobed leaves” were crossed to derive the biparental F2 mapping populations over two years. Genetic segregation analysis suggested that the non-lobed leaf (nll) phenotype is controlled by a single genetic locus with incomplete dominance. Bulk segregant sequencing analysis (BSA-seq) and preliminary linkage mapping with 183 F2 individuals identified the nll locus in a 0.7 Mbp region on chromosome 4, which was also verified in a genome-wide association study (GWAS) of 144 watermelon accessions with leaf variations. Fine genetic mapping with a large F2 population (n = 1069) and screened recombinants exposed the delimited candidate region of 98.23 kb with eight functionally annotated genes. The sequence analysis in this region suggested that Cla97C04G076510 is the most likely candidate gene for regulating the nll, which encodes a homeobox leucine zipper (HD-Zip) transcription factor (ClNll), a homolog of the LATE MERISTEM IDENTITY1 (LMI1) in Arabidopsis. A single nucleotide deletion in the second exon of nll was mainly responsible for the non-lobed leaf phenotype, which encoded a truncated protein. A genetic marker based on the 1-bp deletion showed co-segregation with leaf lobeness in the F2 population, exhibiting validation in the natural GWAS panel of 144 watermelon accessions. The phylogenetic associations of ClNll protein sequences with 11 homologous sequences from eight other plant species revealed an identical conserved function. Further, the expression level of the Cla97C04G076510 gene was noticed to be significantly lower in the non-lobed leaf of the DW-2 mutant. The identified results provide valuable insights for understanding the genetic regulation of leaf shape variation in watermelon and would be helpful for marker-assisted breeding aimed at the development of improved cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amanullah S, Saroj A, Osae BA, Liu S, Liu H, Gao P, Luan F (2020) Detection of putative QTL regions associated with ovary traits in melon using SNP-CAPS markers. Sci Hortic 270:109445

    Article  CAS  Google Scholar 

  • Amanullah S, Gao P, Osae BA, Saroj A, Yang T et al (2021) Genetic linkage mapping and QTLs identification for morphology and fruit quality related traits of melon by SNP based CAPS markers. Sci Hortic 278:109849

    Article  CAS  Google Scholar 

  • Amanullah S, Osae BA, Yang T, Li S, Abbas F et al (2022) Development of whole genome SNP-CAPS markers and preliminary QTL mapping of fruit pedicel traits in watermelon. Front Plant Sci 13:879919

    Article  PubMed  PubMed Central  Google Scholar 

  • Amanullah S, Li S, Osae BA, Yang T, Abbas F et al (2023) Primary mapping of quantitative trait loci regulating multivariate horticultural phenotypes of watermelon (Citrullus lanatus L.). Front Plant Sci 13:1034952

    Article  PubMed  PubMed Central  Google Scholar 

  • Andres RJ, Bowman DT, Kaur B, Kuraparthy V (2014) Mapping and genomic targeting of the major leaf shape gene (L) in Upland cotton (Gossypium hirsutum L.). Theor Appl Genet 127:167–177

    Article  CAS  PubMed  Google Scholar 

  • Andres RJ, Coneva V, Frank MH, Tuttle JR, Samayoa LF et al (2017) Modifications to a LATE MERISTEM IDENTITY1 gene are responsible for the major leaf shapes of upland cotton (Gossypium hirsutum L.). Proc Natl Acad Sci USA 114:e57-E66

    Article  CAS  PubMed  Google Scholar 

  • Baker-Brosh KF, Peet RK (1997) The ecological significance of lobed and toothed leaves in temperature forest trees. Ecology 78:1250–1255

    Google Scholar 

  • Bilsborough GD, Runions A, Barkoulas M, Jenkins HW et al (2011) Model for the regulation of Arabidopsis thaliana leaf margin development. Proc Natl Acad Sci USA 108:3424–3429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bo K, Duan Y, Qiu X, Zhang M, Shu Q, Sun Y et al (2021) Promoter variation in a homeobox gene, CpDll, is associated with deeply lobed leaf in Cucurbita pepo L. Theor Appl Genet 58:1–12

    Google Scholar 

  • Chai L, Feng B, Liu X, Jiang L, Yuan S, Zhang Z et al (2020) Fine mapping of a locus underlying the ectopic blade-like outgrowths on leaf and screening its candidate genes in rapeseed (Brassica napus L.). Front Plant Sci 11:2097

    Google Scholar 

  • Chang L, Mei G, Hu Y, Deng J, Zhang T (2019) LMI1-like and KNOX1 genes coordinately regulate plant leaf development in dicotyledons. Plant Mol Biol 99:449–460

    Article  CAS  PubMed  Google Scholar 

  • Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO et al (2021) Twelve years of SAMtools and BCFtools. Gigascience 10(2):gia008

    Article  Google Scholar 

  • Ellis B, Daly DC, Hickey LJ, Johnson KR, Mitchell JD, Wilf P, Wing SL (2009) Manual of leaf architecture. Cornell University Press, Ithaca

    Book  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Ferris KG, Rushton T, Greenlee AB, Toll K, Blackman BK, Willis JH (2015) Leaf shape evolution has a similar genetic architecture in three edaphic specialists within the Mimulus guttatus species complex. Ann Bot 116:213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Ning X, Wang Y, Wang X, Yan W, Zhang Z, Li G (2014a) Fine mapping of a gene that confers palmately lobed leaf (pll) in melon (Cucumis melo L.). Euphytica 200:337–347

    Article  Google Scholar 

  • Gao XW, Ning XF, Wang YM, Wang XL, Yan WL, Zhang ZQ et al (2014b) Fine mapping of a gene that confers palmately lobed leaf (pll) in melon (Cucumis melo L.). Euphytica 200:337–347

    Article  Google Scholar 

  • Gao M, Hu L, Li Y, Weng Y (2016) The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit. Theor Appl Genet 129:1961–1973

    Article  CAS  PubMed  Google Scholar 

  • Goliber T, Kessler S, Chen JJ, Bharathan G, Sinha N (1998) Genetic, molecular, and morphological analysis of compound leaf development. Curr Top Dev Biol 43:259–290

    Article  Google Scholar 

  • Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H et al (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45:51–58

    Article  CAS  PubMed  Google Scholar 

  • Hay A, Kaur H, Phillips A, Hedden P, Hake S, Tsiantis M (2002) The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Curr Biol 12:1557–1565

    Article  CAS  PubMed  Google Scholar 

  • Herrington M, Brown P (1988) Inheritance of leaf and fruit characteristics in Cucurbita maxima Duch cv Queensland blue X Cucurbita ecuadorensis cutler and whitaker. Qld J Agric Animal Sci 45(1):45–48

    Google Scholar 

  • Hu L, Zhang H, Yang Q, Meng Q, Han S, Nwafor CC, Khan MHU, Fan C, Zhou Y (2018) Promoter variations in a homeobox gene, BnA10.LMI1, determine lobed leaves in rapeseed (Brassica napus L.). Theor Appl Genet 131:2699–2708

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Zhang H, Sun Y, Shen X, Amoo O, Wang Y, Fan C, Zhou Y (2020) BnA10.RCO, a homeobox gene, positively regulates leaf lobe formation in Brassica napus L. Theor Appl Genet 133:3333–3343

    Article  CAS  PubMed  Google Scholar 

  • Jasinski S, Tattersall A, Piazza P, Hay A, Martinez-Garcia JF, Schmitz G et al (2008) PROCERA encodes a DELLA protein that mediates control of dissected leaf form in tomato. Plant J 56:603–612

    Article  CAS  PubMed  Google Scholar 

  • Jiao K, Li X, Guo W, Yuan X, Cui X, Chen X (2016) Genome re-sequencing of two accessions and fine mapping the locus of lobed leaflet margins in mungbean. Mol Breed 36:128

    Article  Google Scholar 

  • Kasprzewska A, Carter R, Swarup R, Bennett M, Monk N, Hobbs JK, Fleming A (2015) Auxin influx importers modulate serration along the leaf margin. Plant J 83:705–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ke D (1980) Spontaneous mutant of Cucurbita maxima Duch. squash with lobed leaves. Genetika 16:176–178

    Google Scholar 

  • Kong Q, Yuan J, Gao L, Zhao S, Jiang W, Huang Y, Bie Z (2014) Identification of suitable reference genes for gene expression normalization in qRT-PCR analysis in watermelon. PLoS ONE 9(2):e90612

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Zhao Y, Zhu Q, Zhang Z, Fan C, Amanullah S, Gao P, Luan F (2017) Mapping of powdery mildew resistance genes in melon (Cucumis melo L.) by bulked segregant analysis. Sci Hortic 220:160–167

    Article  CAS  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome project data processing S (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

  • Liang X, Gao M, Amanullah S, Guo Y, Liu X, Xu H et al (2022) Identification of QTLs linked with watermelon fruit and seed traits using GBS-based high-resolution genetic mapping. Sci Hortic 303:111237

    Article  CAS  Google Scholar 

  • Liu L, Sun T, Liu X, Guo Y, Huang X, Gao P, Wang X (2019) Genetic analysis and mapping of a striped rind gene (st3) in melon (Cucumis melo L.). Euphytica 215:20

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Luan F, Fan C, Sun L, Cui H, Amanullah S, Tang L, Gao P (2019) Genetic mapping reveals a candidate gene (eg) for egusi seed in watermelon. Euphytica 215:182

    Article  CAS  Google Scholar 

  • Lv Y, Gao P, Liu S, Fang X, Zhang T, Liu T et al (2022) Genetic mapping and QTL analysis of stigma color in melon (Cucumis melo L.). Front Plant Sci 13:865082

    Article  PubMed  PubMed Central  Google Scholar 

  • Ni X, Huang J, Ali B, Zhou W, Zhao J (2015) Genetic analysis and fine mapping of the LOBED-LEAF 1 (BnLL1) gene in rapeseed (Brassica napus L.). Euphytica 204:29–38

    Article  CAS  Google Scholar 

  • Ni X, Liu H, Huang J, Zhao J (2017) LMI1-like genes involved in leaf margin development of Brassica napus. Genetica 145:269–274

    Article  CAS  PubMed  Google Scholar 

  • Nicotra AB, Leigh A, Boyce CK, Jones CS, Niklas KJ, Royer DL et al (2011) The evolution and functional significance of leaf shape in the angiosperms. Funct Plat Biol 38:535–552

    Article  Google Scholar 

  • Olsen MK, Wendel FJ (2013) Crop plants as models for understanding plant adaptation and diversification. Plant Evol Dev 4:1–16

    Google Scholar 

  • Pei S, Liu Z, Wang X, Luan F, Dai Z, Yang Z et al (2021) Quantitative trait loci and candidate genes responsible for pale green flesh colour in watermelon (Citrullus lanatus). Plant Breed 140:349–359

    Article  CAS  Google Scholar 

  • Peter W (2016) When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology 23:373–390

    Google Scholar 

  • Pu HM, Fu SZ, Qi CK, Zhang JF, Wu YM, Gao JQ et al (2001) Inheritance of divided leaf trait of rapeseed (Brassica napus) and application in hybrid breeding. Chin J Oil Crop Sci 23:60–62

    Google Scholar 

  • Rodriguez RE, Debernardi JM, Palatnik JF (2014) Morphogenesis of simple leaves: regulation of leaf size and shape. Wiley Interdiscip Rev Dev Biol 3:41–57

    Article  PubMed  Google Scholar 

  • Saddic LA, Huvermann B, Bezhani S, Su Y, Winter CM, Kwon CS, Collum RP, Wagner D (2006) The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of CAULIFLOWER. Development 133:1673–1682

    Article  CAS  PubMed  Google Scholar 

  • Shani E, Ben-Gera H, Shleizer-Burko S, Burko Y, Weiss D, Ori N (2010) Cytokinin regulates compound leaf development in tomato. Plant Cell 22:3206–3217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sicard A, Thamm A, Marona C, Lee YW, Wahl V, Stinchcombe JR et al (2014) Repeated evolutionary changes of leaf morphology caused by mutations to a homeobox gene. Curr Biol 24:1880–1886

    Article  CAS  PubMed  Google Scholar 

  • Sluis A, Hake S (2015) Organogenesis in plants: initiation and elaboration of leaves. Trends Genet 31:300–306

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Yang L, Wang J, Liu H, Zheng H, Xie D et al (2018) Identification of a cold-tolerant locus in rice (Oryza sativa L.) using bulked segregant analysis with a next-generation sequencing strategy. Rice 11(1):1–12

    Article  Google Scholar 

  • Sun L, Zhang Y, Cui H, Zhang L, Sha T, Wang C et al (2020) Linkage mapping and comparative transcriptome analysis of firmness in watermelon (Citrullus lanatus). Front Plant Sci 11:831

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsukaya H (2005) Leaf shape: genetic controls and environmental factors. Int J Dev Biol 49:547–555

    Article  PubMed  Google Scholar 

  • Tsukaya H (2006) Mechanism of leaf-shape determination. Annu Rev Plant Biol 57:477–496

    Article  CAS  PubMed  Google Scholar 

  • Tsukaya H (2013) Leaf development Arabidopsis book 11:e0163

    Article  PubMed  Google Scholar 

  • Uchida N, Kimura S, Koenig D, Sinha N (2010) Coordination of leaf development via regulation of KNOX1 genes. J Plant Res 123:7–14

    Article  CAS  PubMed  Google Scholar 

  • Ueda Y, Frimpong F, Qi Y, Matthus E, Wu L, Höller S, Kraska T, Frei M (2015) Genetic dissection of ozone tolerance in rice (Oryza sativa L.) by a genome-wide association study. J Exp Bot 66:293–306

    Article  CAS  PubMed  Google Scholar 

  • Vlad D, Kierzkowski D, Rast MI, Vuolo F, DelloIoio R, Galinha C et al (2014) Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science 343:780–783

    Article  CAS  PubMed  Google Scholar 

  • Vuolo F, Kierzkowski D, Runions A, Hajheidari M, Mentink RA, Gupta MD et al (2018) LMI1 homeodomain protein regulates organ proportions by spatial modulation of endoreduplication. Genes Dev 32:1361–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter A, Schurr U (2005) Dynamics of leaf and root growth: endogenous control versus environmental impact. Ann Bot 95:891–900

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhang J, Xie Y, Liu X, Wen L, Wang H et al (2021) LATE MERISTEM IDENTITY1 regulates leaf margin development via the auxin transporter gene SMOOTH LEAF MARGIN1. Plant Physiol 187:218–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei C, Chen X, Wang Z, Liu Q, Li H, Zhang Y, Ma J, Yang J, Zhang X (2017) Genetic mapping of the lobed leaf 1 (ClLL1) gene to a 127.6-kb region in watermelon (Citrullus lanatus L.). PLoS ONE 12:e0180741

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu S, Wang X, Reddy U, Sun H, Bao K, Gao L, Mao L et al (2019) Genome of charleston gray, the principal american watermelon cultivar, and genetic characterization of 1,365 accessions in the U.S. national plant germplasm system watermelon collection. Plant Biotechnol J 17:2246–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Amanullah S, Pan J, Chen G, Liu S, Ma S et al (2021) Identification of putative genetic regions for watermelon rind hardness and related traits by BSA-seq and QTL mapping. Euphytica 217:1–18

    Article  CAS  Google Scholar 

  • Zhang L, Xu Y, Zhang X, Ma X, Zhang L, Liao Z, Zhang Q, Wan X et al (2020) The genome of kenaf (Hibiscus cannabinus L.) provides insights into bast fiber and leaf shape biogenesis. Plant Biotechnol J 18:1796–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Chen W, Li X, Ren W, Chen L, Han F et al (2021) Map-based cloning and promoter variation analysis of the lobed leaf gene BoLMI1a in ornamental kale (Brassica oleracea L var acephala). BMC Plant Biol 95:456

    Article  Google Scholar 

  • Zhang TF, Liu JJ, Amanullah S, Ding Z, Cui H, Luan F, Gao P (2021b) Fine mapping of Cla015407 controlling plant height in watermelon. J Amer Soc Hort Sci 146:196–202

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We (the authors) are grateful to the researchers of Qiqihar Agricultural Technology Extension Center.

Funding

This research work was financially supported by grants from the National Natural Science Foundation of China (31972437, 31772334), the Fundamental Research Funds in Heilongjiang Provincial Universities (Project ID: 135509219), and the Heilongjiang Postdoctoral Research Program (LBH-21196).

Author information

Authors and Affiliations

Authors

Contributions

M.X.: Writing—original draft, methodology, investigation, data curation, formal analysis, validation, writing—reviewing & editing. M.G.: Project administration, conceptualization, funding acquisition, investigation, methodology, supervision. S.A.: Writing—reviewing & editing, methodology, investigation, validation, formal analysis, visualization. Y.G.: Methodology, software, investigation, data curation, formal analysis. X.B.: Methodology, investigation, data curation, formal analysis. Y.D.: Methodology, investigation, data curation. X.L.: Methodology, investigation, data curation. J.L.: Software, investigation, formal analysis. Y.G.: Methodology, investigation, data curation. F.L.: Conceptualization, writing—review & editing.

Corresponding author

Correspondence to Meiling Gao.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships which have or could be perceived to have influenced the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Gao, M., Amanullah, S. et al. Fine genetic mapping confers a major gene controlling leaf shape variation in watermelon. Euphytica 219, 92 (2023). https://doi.org/10.1007/s10681-023-03222-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-023-03222-0

Keywords

Navigation