Skip to main content
Log in

Identification of putative genetic regions for watermelon rind hardness and related traits by BSA-seq and QTL mapping

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Textural quality of watermelon fruit is mainly determined by rind hardness/firmness and its related traits. The determination of genetic regions harboring QTLs/gene(s) has a primary worth in genetic breeding studies. In this study, whole genome BSA-seq and QTL mapping through newly developed CAPS markers were successfully performed, respectively. Total 133-F2 mapping individuals were derived from crossing of P1 ‘1061’ and P2 ‘812’ and slefing of F1 offspring. Whole genome BSA-seq revealed major genetic region controlling rind hardness trait on chromosome 10. The genetic linkage map was assembled by genotyping of 133 pairs of codominant CAPS markers which spanned total 2606.38 cM length with averaged 19.60 cM distance among whole genome flanking markers. Moreover, CAPS markers based QTL analysis revealed total 5 putative QTLs [2 rind-hardness (RH), 1 rind toughness (RTO), 1 rind thickness (RTH) and 1 fruit weight (FW)] on three distinct chromosomes (2, 9, and 10), which mainly contributed 5.44–49.11% PVE. Interestingly, the combined molecular techniques expressed putative genetic region controlling rind hardness at chromosome 10. According to the BSA-seq result, major genetic region was detected between 1792001 and 4036000 bp on chromosome 10 with 2.24 Mb range, while from QTLs analysis, two co-localized focal QTLs “RH10 and RTO10” revealed 20 and 39 predicted genes at shortened genetic distances of 292.76 kbp and 405.31 kbp, respectively. A significant correlation and normal distribution frequencies for rind-phenotypes were also noticed. In crux, our combined techniques proved as an effective mapping strategies for identification of QTLs/gene(s) and provided a strong theoretical basis for future breeding studies in watermelon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alkan N, Fortes AM (2015) Insights into molecular and metabolic events associated with fruit response to post-harvest fungal pathogens. Front Plant Sci 6:889

    Article  PubMed  PubMed Central  Google Scholar 

  • Amanullah S, Shi L, Peng G, Zhicheng Z, Qianglong Z, Chao F, Luan F (2018) QTL mapping for melon (Cucumis melo L.) fruit traits by assembling and utilization of novel SNPs based CAPS markers. Sci Hortic 236:18–19

    Article  Google Scholar 

  • Amanullah S, Arvind S, Osae BA, Liu S, Liu H, Gao P, Luan F (2020) Detection of putative QTL regions associated with ovary traits in melon using SNP-CAPS markers. Sci Hortic 270:109445

    Article  CAS  Google Scholar 

  • Brashlyanova B, Zsivanovits G, Ganeva D (2014) Texture quality of tomatoes as affected by different storage temperatures and growth habit. Emir J Food Agric 26(9):750–756

    Article  Google Scholar 

  • Capel C, Yuste-Lisbona FJ, López-Casado G, Angosto T, Heredia A, Cuartero J, Lozano R, Capel J (2016) Multi-environment QTL mapping reveals genetic architecture of fruit cracking in a tomato RIL Solanum lycopersicum pimpinellifolium population. Theor Appl Gen 130:213–222

    Article  CAS  Google Scholar 

  • Chagne D, Crowhurst RN, Pindo M et al (2014) The draft genome sequence of European Pear (Pyrus communis L. ‘Bartlett’). PLoS ONE 9:e92644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaib J, Devaux MF, Grotte MG, Robini K, Causse M, Lahaye M, Marty I (2007) Physiological relationships among physical, sensory, and morphological attributes of texture in tomato fruits. J Exp Bot 58(8):1915–1925

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Bowman JL, Dejohn AW, Landert ES, Meyerowitz EM (1988) Restriction fragment length polymorphism linkage map for Arabidopsis thaliana. Proc Natl Acad Sci U S A 85:6856–6860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman NH, Bonnet J, Grivet L, Lynn J, Graham N, Smith R, Sun G, Walley PG, Poole M, Causse M, King GJ, Baxter C, Seymour GB (2012) High resolution mapping of a fruit firmness-related QTL in tomato reveals epistatic interactions associated with a complex combinatorial locus. Plant Physiol 159(4):1644–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Opara UL (2013) Texture measurement approaches in fresh and processed foods—a review. Food Res Int 51(2):823–835

    Article  Google Scholar 

  • Chen JXL, Lili Y, Yipeng L, Sitian Z, Haochen Z, Rongxia G, Lijuan Q (2019) QTL mapping of hard seededness in wild soybean using BSA method. Sci Agric China 52(13):2208–2219 (In Chinese)

    Google Scholar 

  • Costa F, Stella S, Van de Weg WE, Guerra W, Cecchinel M, Dallavia J, Koller B, Sansavini S (2005) Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh). Euphytica 141:181–190

    Article  CAS  Google Scholar 

  • Costa F, Van de Weg WE, Stella S, Dondini L, Pratesi D, Musacchi S, Sansavini S (2008) Map position and functional allelic diversity of Md-Exp7, a new putative expansion gene associated with fruit softening in apple (Malus × domestica Borkh.) and pear (Pyrus communis). Tree Genet Gen 4:575–586

    Article  Google Scholar 

  • Costa F, Peace CP, Stella S, Serra S, Musacchi S, Bazzani M, Sansavini S, Van de Weg WE (2010) QTL dynamics for fruit firmness and softening around an ethylene-dependent polygalacturonase gene in apple (Malus × domestica Borkh.). J Exp Bot 61:3029–3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deokar A, Sagi M, Daba K, Tar’an B (2019) QTL sequencing strategy to map genomic regions associated with resistance to ascochyta blight in chickpea. Plant Biotechnol J 17:275–288

    Article  CAS  PubMed  Google Scholar 

  • Dhillon NPS, Ranjana R, Singh K, Eduardo I, Monforte AJ, Pitrat M et al (2006) Diversity among landraces of Indian snapmelon (Cucumis melo var. momordica). Genet Resour Crop Evol 54:1267–1283

    Article  Google Scholar 

  • Dong W, Wu D, Li G, Wu D, Wang Z (2018) Next-generation sequencing from bulked segregant analysis identifies a dwarfism gene in watermelon. Sci Rep 8:2908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eyberg DA, Summers WL, Hall CV (1980) The inheritance of rind color patterns in watermelon, Citrullus lanatus (Thunb.), Matsum. and Nakai. Hortic Sci 15(3):420

    Google Scholar 

  • Fan M, Xu Y, Zhang H et al (2000) QTL mapping and genetic effect analysis of watermelon fruit traits. Acta Gen 27(10):902–910

    CAS  Google Scholar 

  • Ganal MW, Altmann T, Röder MS (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217

    Article  CAS  PubMed  Google Scholar 

  • Gao ML, Yuan CZ, Wang YF (2013) Comparative study on the microstructure of watermelon peel. Jiangsu Agric Sci 41:133–135

    Google Scholar 

  • Garcia-Mas J, Benjak A, Sanseverino W et al (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci U S A 109:11872–11877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goff SA, Ricke D, Lan T et al (2005) A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Science 296:92–100

    Article  Google Scholar 

  • Guo S, Zhang J, Sun H (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45(1):51–58

    Article  CAS  PubMed  Google Scholar 

  • Harker FR, Gunson FA, Jaeger SR (2003) The case for fruit quality: an interpretive review of consumer attitudes, and preferences for apples. Postharvest Biol Technol 28:333–347

    Article  Google Scholar 

  • Hashizume T, Shimamoto I, Hiraj M (2003) Construction of a linkage map and QTL analysis of horticultural traits for watermelon [Citrullus lanatus (THUNB.) MATSUM & NAKAI] using RAPD, RFLP and ISSR markers. Theor Appl Genet 106(5):779–785

    Article  CAS  PubMed  Google Scholar 

  • Henry RJ (2008) Plant genotyping II: SNP technology. CABI, Wallingford

    Book  Google Scholar 

  • Hirakawa H, Shirasawa K, Miyatake K et al (2014) Draft genome sequence of eggplant (Solanum melongena L.): the representative solanum species indigenous to the old world. DNA Res 21:649–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Deng G, Mou H, Xu Y, Chen L, Yang J, Zhang M (2017) A resequencing-based ultra-dense genetic map reveals a gummy stem blight resistance-associated gene in Cucumis melo. DNA Res 25:1–10

    Article  PubMed Central  CAS  Google Scholar 

  • Huang XM, Wang HC, Gao FF, Huang HB (2015) A comparative study of the pericarp of litchi cultivars susceptible and resistant to fruit cracking. J Hortic Sci Biotechnol 74:351–354

    Article  Google Scholar 

  • Imerovski I, Dedić B, Cvejić S, Miladinovic D, Jocic S, Owens GL, Tubic NK, Rieseberg LH (2019) BSA-seq mapping reveals major QTL for broomrape resistance in four sunflower lines. Mol Breed 39:41

    Article  CAS  Google Scholar 

  • Jia DJ, Shen F, Wang Y, Wu T, Xu XF, Zhang XZ, Han ZH (2018) Apple fruit acidity is genetically diversified by natural variations in three hierarchical epistatic genes: MdSAUR37, MdPP2CH and MdALMTII. Plant J 95:427–443

    Article  CAS  PubMed  Google Scholar 

  • Jing Y, Biao Z, Yonh H, Quansheng Y, Leichen Z (2017) Study on mechanical properties and fruit quality analysis of watermelon (Cirtullus lanatus). Acta Agric Zhejiang 29(9):1581–1588 (In Chinese)

    Google Scholar 

  • Khadivi-Khub A (2014) Physiological and genetic factors influencing fruit cracking. Acta Physiol Plant 37:1718

    Article  CAS  Google Scholar 

  • Kole C, Abbott AG (2008) Principles and practices of plant genomics, volume 1. Genome mapping. Science Publishers, Enfield

    Google Scholar 

  • Lana MM, Tijskens LMM, De Theije A, Dekker M, Barrett DM (2010) Measurement of firmness of fresh-cut sliced tomato using puncture tests: studies on sample size, probe size and direction of puncture. J Text Stud 38(5):601–618

    Article  Google Scholar 

  • Lee SY, Luna-Guzman I, Chang S, Barrett DM, Guinard JX (1999) Relating descriptive analysis and instrumental texture data of processed diced tomatoes. Food Qual Pref 10(6):447–455

    Article  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennel T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAM tools. Bioinformatics 25(16):2078–2079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, He Y, Guo P, Xu X, Wu M, Wang M (2016) Correlation analysis and path analysis of tomato fruit hardness and multiple characters. J Northeast Agric Univ Engl Ed 47(05):1–8

    Google Scholar 

  • Li L, Zhao W, Zeng X, Xue S, Huo Y, Fang Y, Guo R (2017a) Correlation between texture and sensory evaluation of Apple. Food Mach 33(06):37–41+45 (In Chinese)

  • Li B, Zhao Y, Zhu Q, Zhang Z, Fan C, Amanullah S, Gao P, Luan F (2017b) Mapping of powdery mildew resistance genes in melon (Cucumis melo L.) by bulked segregant analysis. Sci Hort 220:160–167

    Article  CAS  Google Scholar 

  • Li Y, Tian R, Zheng W, Zhang Y (2019a) Relationship between fruit hardness, peel structure and pectin content in tomato during green ripening. China Veg 12:37–40.43

  • Li B, Zhao S, Dou J, Ali A, Liu W (2019b) Genetic mapping and development of molecular markers for a candidate gene locus controlling rind color in watermelon. Theor Appl Gen 132:2741–2753

    Article  CAS  Google Scholar 

  • Liao N, Hu Z, Li Y, Hao J, Chen S, Xue Q, Ma Y, Zhang K, Mahmoud A, Ali A, Malangisha GK, Lyu X, Yang J, Zhang M (2019) Ethylene-responsive factor 4 is associated with the desirable rind hardness trait conferring cracking resistance in fresh fruits of watermelon. Plant Biotechnol 18(4):1066–1077

    Article  CAS  Google Scholar 

  • Ling KS, Harris KR, Meyer JDF, Levi A, Guner N, Wehner TC, Bendahmane A, Havey MJ (2009) Non-synonymous single nucleotide polymorphisms in the watermelon eIF4E gene are closely associated with resistance to Zucchini yellow mosaic virus. Theor Appl Genet 120:191–200

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Xue J, Jin F, Bai Y (2007) Relationship between crack and peel structure of eggplant and its heterosis. North China Agric J 03:141–147

    Google Scholar 

  • Liu S, Gao P, Zhu Q, Feishi L, Davis AR, Wang X (2016) Development of cleaved amplified polymorphic sequence markers and a CAPS based genetic linkage map in watermelon (Citrullus lanatus [Thunb.] Matsum. and Nakai) constructed using whole-genome re-sequencing data. Breed Sci 66:244–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Sun T, Liu X, Guo Y, Huang X, Gao P, Wang X (2019) Genetic analysis and mapping of a striped rind gene (st3) in melon (Cucumis melo L.). Euphytica 215(2):20

    Article  CAS  Google Scholar 

  • Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S (2014) QTL-seq identifies an early flowering QTL located near flowering locus T in cucumber. Theor Appl Genet 127:1491–1499

    Article  PubMed  Google Scholar 

  • Luan F, Delannay I, Staub JE (2008) Chinese melon (Cucumis melo L.) diversity analyses provide strategies for germplasm curation genetic improvement, and evidentiary support of domestication patterns. Euphytica 164(2):445–461

    Article  CAS  Google Scholar 

  • Luo H, Pandey MK, Khan AW, Guo J, Wu B, Cai Y, Huang L et al (2018) Discovery of genomic regions and candidate genes controlling shelling percentage using QTL-seq approach in cultivated peanut (Arachis hypogaea L.). Plant Biotechnol J 17:1248–1260

    Article  CAS  Google Scholar 

  • Meng L, Li H, Zhang LY, Wang JK (2015) QTL Ici mapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283

    Article  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno E, Obando JM, Dos-Santos N, Fernandez-Trujillo JP, Monforte AJ, Garcia-Mas J (2008) Candidate genes and QTLs for fruit ripening and softening in melon. Theor Appl Genet 116:589–602

    Article  CAS  PubMed  Google Scholar 

  • Nimmakayala P, Tomason YR, Abburi VL et al (2016) Genome-Wide differentiation of various melon horticultural groups for use in GWAS for fruit firmness and construction of a high resolution genetic map. Front Plant Sci 7:1437

    Article  PubMed  PubMed Central  Google Scholar 

  • Pootakham W, Chanprasert J, Jomchai N, Sangsrakru D, Yoocha T, Therawattanasuk K, Tangphatsornruang S (2011) Single nucleotide polymorphism marker development in the rubber tree, Hevea brasiliensis (euphorbiaceae). Am J Bot 98:e337–e338

    Article  PubMed  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. 22 Jan 2020

  • Reddy UK, Abburi L, Abburi VL et al (2015) A genome-wide scan of selective sweeps and association mapping of fruit traits using microsatellite markers in watermelon. J Hered 106(2):166–176

    Article  CAS  PubMed  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    Article  CAS  PubMed  Google Scholar 

  • Sandlin K, Prothro J, Heesacker A et al (2012) Comparative mapping in watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai]. Theor Appl Genet 125:1603–1618

    Article  PubMed  Google Scholar 

  • Shackel KA, Greve C, Labavitch JM, Ahmadi H (1991) Cell turgor changes associated with ripening in tomato pericarp tissue. Plant Physiol 97:814–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • She H, Qian W, Zhang H, Liu Z, Wang X, Wu J, Feng C et al (2018) Fine mapping and candidate gene screening of the downy mildew resistance gene RPF1 in Spinach. Theor Appl Genet 131:2529–2541

    Article  CAS  PubMed  Google Scholar 

  • Shu YJ, Li Y, Bai X, Cai H, Ji W, Zhu YM (2009) Development of soybean gene-driven functional CAPS markers based on gene resequencing. Acta Agron Sin 35:2015–2021

    Article  CAS  Google Scholar 

  • Sun L, Zhang YS, Cui HN, Zhang LP, Sha TY, Wang CN, Fan C, Luan FS, Wang XZ (2020) Linkage mapping and comparative transcriptome analysis of firmness in Watermelon (Citrullus lanatus). Front Plant Sci 11:831

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan C, Liu Z, Huang S, Feng H (2018) Mapping of the male sterile mutant gene ftms in Brassica rapa l. ssp. pekinensis via bsa-seq combined with whole-genome resequencing. Theor Appl Genet 132(2):355–370

    Article  PubMed  CAS  Google Scholar 

  • Tang HY, Dong X, Xia JH, Xie F, Zhang Y, Yao X, Xu YJ, Wang ZJ (2018) Fine mapping and candidate gene prediction for white immature fruit skin in cucumber (Cucumis sativus L.). Int J Mol Sci 19:1493

    Article  PubMed Central  CAS  Google Scholar 

  • Tanksley SD, Medina-Filho H, Rick CM (1982) Use of naturally-occurring enzyme variation to detect and map genes controlling quantitative traits in an interspecific backcross of tomato. Heredity 49:11–25

    Article  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP et al (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiel T, Kota R, Grosse I, Stein N, Graner A (2004) SNP2P2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Res 32(1):5e–5

    Article  Google Scholar 

  • Vegas J, Garcia-Mas J, Monforte AJ (2013) Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening. Theor Appl Genet 126(6):1531–1544

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhou X, Guo A, Zhang Y (2009) Comparison of methods for determination of tomato hardness by texture analyzer. South Agric 3(06):40–43 (In Chinese)

    Google Scholar 

  • Wang Q, Nian J, Xie X et al (2018) Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice. Nat Commun 9:735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Xu X, Ji J, Xu Q, Qi X, Weng Y, Chen X (2018) The major-effect quantitative trait locus CsARN6.1 encodes an AAA ATPase domain containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation. Plant J 93:917–930

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Sato S, Isobe S, Tabata S, Fukuoka H (2014) Draft genome sequence of eggplant (Solanum melongena L.): the representative solanum species indigenous to the old World. DNA Res 21:649–660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang W, Guo X, Xia Y, Shen X (2013) Analysis of texture of apple with p/2 probe and p/100 probe. Shandong Agric Sci 45(11):37–38

    Google Scholar 

  • Zhang P, Zhu Y, Wang L, Chen L, Chen S (2015) Mining candidate genes associated with powdery mildew resistance in cucumber via super-BSA by specific length amplified fragment (SLAF) sequencing. BMC Genom 16:1058–1072

    Article  CAS  Google Scholar 

  • Zhang T, Liu J, Liu S, Ding Z, Luan F, Gao P (2019) Bulked-segregant analysis identified a putative region related to short internode length in melon. Hortic Sci 54(8):1293–1298

    CAS  Google Scholar 

  • Zhang T, Ding Z, Liu L, Qiu B, Gao P (2020) QTL mapping of pericarp and fruit-related traits in melon (Cucumis melo L.) using SNP-derived CAPS markers. Sci Hortic 265:109243

    Article  CAS  Google Scholar 

  • Zhao Z, Wang M (1994) Study on the mechanism of storage tolerance of watermelon germplasm. Acta Hortic Sin 1:99–100

    Google Scholar 

  • Zhao T, Jiang J, Liu G, He S, Zhang H, Chen X (2016) Mapping and candidate gene screening of tomato Cladosporium fulvum-resistant gene cf-19, based on high-throughput sequencing technology. BMC Plant Biol 16:51–60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu Q, Gao P, Liu S, Amanullah S, Luan F (2016) Comparative analysis of single nucleotide polymorphisms in the nuclear, chloroplast, and mitochondrial genomes in identification of phylogenetic association among seven melon (Cucumis melo L.) cultivars. Breed Sci 66:711–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All authors are thankful for financial funding supported by 538-National Key Research and Development Program (2018YFD0100703) , 539-China Agriculture Research System (CARS-25), and National Nature Science Foundation of China (Project No. 31772333). Authors are also grateful to Chinese Academy of Agricultural Sciences, Zhengzhou Fruit Research Institute, Henan, for provision of experimental resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Gao or Xuezheng Wang.

Ethics declarations

Conflict of interest

Authors declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Amanullah, S., Pan, J. et al. Identification of putative genetic regions for watermelon rind hardness and related traits by BSA-seq and QTL mapping. Euphytica 217, 19 (2021). https://doi.org/10.1007/s10681-020-02758-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-020-02758-9

Keywords

Navigation