Skip to main content
Log in

Identification of QTL for leaf angle at canopy-wide levels in maize

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Leaf angle (LA) is one of the most important canopy architecture related traits in maize (Zea mays L.). However, the genetic basis of LA at canopy-wide levels is still not completely understood. In this study, one RIL population derived from two parent lines with distinct plant architecture was used for QTL mapping of LA at eight leaves below the tassel across three environments. Fifty-six QTL for LA of eight leaves were identified in single environment analysis and 44 QTL for LA of eight leaves were detected in joint analysis. Among them, nine common QTL were identified because they were detected for LA more than 1 leaves or in 2 or 3 environments. The single QTL could explain 1.29–20.14% of the phenotypic variation with affecting LA of 1–8 leaves, included qLA5.1 affected LA of all eight leaves, qLA3.1 affected LA of the upper leaves (1stLA–4thLA), and qLA9.1 affected LA of the lower leaves (5thLA–8thLA). Furthermore, the 8thLA was mainly affected by major and minor QTL; the 1stLA, 4thLA and 5thLA were affected by major QTL, minor QTL and epistatic interactions; the other four LAs were simultaneously affected by major QTL, minor QTL, epistatic interactions and environments, inferred that the genetic architecture of LA of eight leaves was different. These results provide a comprehensive understanding of genetic basis of LA at canopy-wide levels, which will be helpful to design the ideal plant architecture in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

LA:

Leaf angle

1st LA:

First leaf angle

2nd LA:

Second leaf angle

3th LA:

Third leaf angle

4th LA:

Fourth leaf angle

5th LA:

Fifth leaf angle

6th LA:

Sixth leaf angle

7th LA:

Seventh leaf angle

8th LA:

Eighth leaf angle

QTL:

Quantitative Trait Locus

References

  • Anderson MC, Denmead OT (1969) Short wave radiation on inclined surfaces in model plant communities1. Agron J 61:867–872

    Article  Google Scholar 

  • Andrade FH, Uhart SA, Frugone MI (1993) Intercepted radiation at flowering and kernel number in maize: shade versus plant density effects. Crop Sci 33:92–97

    Article  Google Scholar 

  • Becraft PW, Freeling M (1991) Sectors of liguleless-1 tissue interrupt an inductive signal during maize leaf development. Plant Cell 3:801–807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Becraft PW, Bongard-Pierce DK, Sylvester AW, Poethig RS, Freeling M (1990) The liguleless-1 gene acts tissue specifically in maize leaf development. Dev Biol 141:220–232

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Xu D, Zheng L, Yu T, Mei X, Cai Y (2015) Identification of QTL for leaf angle and leaf space above ear position across different environments and generations in maize (Zea mays L.). Euphytica 204:395–405

    Article  CAS  Google Scholar 

  • Ding J, Zhang L, Chen J, Li X, Li Y, Cheng H, Huang R, Zhou B, Li Z, Wang J (2015) Genomic dissection of leaf angle in maize (Zea mays L.) using a four-way cross mapping population. Plos One 10:e0141619

    Article  PubMed  PubMed Central  Google Scholar 

  • Doebley J, Brutnell TP, Jackson DP (2011) grassy tillers1 promotes apical dominance in maize and responds to shade signals in the grasses. Proc Natl Acad Sci USA 108:506–512

    Google Scholar 

  • Duncan W (1971) Leaf angles, leaf area, and canopy photosynthesis 1. Crop Sci 11:482–485

    Article  Google Scholar 

  • Duncan W, Loomis R, Williams W, Hanau R (1967) A model for simulating photosynthesis in plant communities. Hilgardia 38:181–205

    Article  Google Scholar 

  • Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron 86:83–145

    Article  Google Scholar 

  • Dzievit MJ, Li X, Yu J (2019) Dissection of leaf angle variation in maize through genetic mapping and meta-analysis. Plant Genome 12:1

    Article  Google Scholar 

  • Feng T, Bradbury PJ, Brown PJ, Hsiaoyi H, Qi S, Sherry FG, Rocheford TR, Mcmullen MD, Holland JB, Buckler ES (2015) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162

    Google Scholar 

  • Fowler JE, Muehlbauer GJ, Freeling M (1996) Mosaic analysis of the liguleless3 mutant phenotype in maize by coordinate suppression of mutator-insertion alleles. Genetics 143:489–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo W, Rossi V, Ni Z, Sun Q, Yao Y (2019) Wheat TaSPL8 modulates leaf angle through auxin and brassinosteroid signaling. Plant Physiol 00248:2019

    Google Scholar 

  • Hallauer AR, Carena MJ, Miranda Filho JB (2010) Quantitative genetics in maize breeding. Springer, Berlin

    Google Scholar 

  • Hanson MR, Hibberd JM, Long SP (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci USA 112:8529–8536

    Article  PubMed  PubMed Central  Google Scholar 

  • Harper L, Freeling M (1996) Interactions of liguleless1 and liguleless2 function during ligule induction in maize. Genetics 144:1871–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou X, Liu Y, Xiao Q, Wei B, Zhang X, Gu Y, Wang Y, Chen J, Hu Y, Liu H (2015) Genetic analysis for canopy architecture in an F2:3 population derived from two-type foundation parents across multi-environments. Euphytica 205:421–440

    Article  Google Scholar 

  • Huihui L, Guoyou Y, Jiankang W (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  Google Scholar 

  • Huihui L, Jean-Marcel R, Zhonglai L, Jiankang W (2008) Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet 116:243–260

    Article  Google Scholar 

  • Ishii T, Numaguchi K, Miura K, Yoshida K, Thanh PT, Htun TM, Yamasaki M, Komeda N, Matsumoto T, Terauchi R (2013) OsLG1 regulates a closed panicle trait in domesticated rice. Nat Genet 45:462–465

    Article  CAS  PubMed  Google Scholar 

  • Jihyun M, Héctor C, Sarah H (2013) The Liguleless narrow mutation affects proximal-distal signaling and leaf growth. Development 140:405–412

    Article  Google Scholar 

  • Kong F, Zhang T, Liu J, Heng S, Shi Q, Zhang H, Wang Z, Ge L, Li P, Lu X (2017) Regulation of leaf angle by auricle development in maize. Mol Plant 10:516

    Article  CAS  PubMed  Google Scholar 

  • Ku LX, Zhao WM, Zhang J, Wu LC, Wang CL, Wang PA, Zhang WQ, Chen YH (2010b) Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theor Appl Genet 121:951–959

    Article  CAS  PubMed  Google Scholar 

  • Ku L, Zhao W, Zhang J, Wu L, Wang C, Wang P, Zhang W, Chen Y (2010a) Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theor Appl Genet 121:951–959

    Article  CAS  PubMed  Google Scholar 

  • Ku L, Wei X, Zhang S, Zhang J, Guo S, Chen Y (2011) Cloning and characterization of a putative TAC1 ortholog associated with leaf angle in maize (Zea mays L.). PLoS One 6(6):e20621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ku LX, Zhang J, Guo SL, Liu HY, Zhao RF, Chen YH (2012) Integrated multiple population analysis of leaf architecture traits in maize (Zea mays L.). J Exp Bot 63:261

    Article  CAS  PubMed  Google Scholar 

  • Ku L, Ren Z, Xiao C, Yong S, Qi J, Su H, Wang Z, Li G, Wang X, Zhu Y (2016) Genetic analysis of leaf morphology underlying the plant density response by QTL mapping in maize (Zea mays L.). Mol Breeding 36:63

    Article  Google Scholar 

  • Lambert RJ, Johnson RR (1978) Leaf angle, tassel morphology, and the performance of maize hybrids1. Crop Sci 18:499–502

    Article  Google Scholar 

  • Lewis MW, Bolduc N, Hake K, Htike Y, Hay A, Candela H, Hake S (2014) Gene regulatory interactions at lateral organ boundaries in maize. Development 141:4590–4597

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Ribaut JM, Li Z, Wang J (2008) Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet 116:243–260

    Article  PubMed  Google Scholar 

  • Li C, Li Y, Shi Y, Song Y, Zhang D, Buckler ES, Zhang Z, Wang T, Li Y (2015) Genetic control of the leaf angle and leaf orientation value as revealed by ultra-high density maps in three connected maize populations. PLoS ONE 10:e0121624

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu K, Cao J, Yu K, Liu X, Gao Y, Chen Q, Zhang W, Peng H, Du J, Xin M, Hu Z, Lixia K, Xiaomin W, Shaofang Z, Jun Z, Shulei G, Yanhui C (2011) Cloning and characterization of a putative TAC1 ortholog associated with leaf angle in maize (Zea mays L.). Plos One 6:e20621

    Article  Google Scholar 

  • Liu X, Hao L, Kou S, Su E, Zhou Y, Wang R, Mohamed A, Gao C, Zhang D, Li Y (2019) High-density quantitative trait locus mapping revealed genetic architecture of leaf angle and tassel size in maize. Mol Breed 39(1):7

    Article  Google Scholar 

  • Lu M, Zhou M, Xie C, Li M, Xu Y, Warburton M, Zhang S (2007) Construction of a SSR linkage map and mapping of quantitative trait loci (QTL) for leaf angle and leaf orientation with an elite maize hybrid. Hereditas 29(9):1131–1138 (in Chinese)

    CAS  PubMed  Google Scholar 

  • Mantilla-Perez MB, Salas Fernandez MG (2017) Differential manipulation of leaf angle throughout the canopy: current status and prospects. J Exp Bot 68:5699–5717

    Article  CAS  PubMed  Google Scholar 

  • MAXIENIULILONG DLRZXKSKHL (2014) Changes in the morphological traits of maize genotypes in China between the 1950s and 2000s. Eur J Agron 58:1–10

    Article  Google Scholar 

  • Mickelson S, Stuber C, Senior L, Kaeppler S (2002) Quantitative trait loci controlling leaf and tassel traits in a B73× Mo17 population of maize. Crop Sci 42:1902–1909

    Article  CAS  Google Scholar 

  • Ming LU, Fang Z, Xie CX, Ming-Shun LI, Yun-Bi XU, Warburton M (2007) Construction of a SSR linkage map and mapping of quantitative trait loci (QTL) for leaf angle and leaf orientation with an elite maize hybrid. Hereditas 29:1131–1138

    Google Scholar 

  • Mock JJ, Pearce RB (1975) An ideotype of maize. Euphytica 24:613–623

    Article  Google Scholar 

  • Moon J, Candela H, Hake S (2013) The Liguleless narrow mutation affects proximal-distal signaling and leaf growth. Development 140:405–412

    Article  CAS  PubMed  Google Scholar 

  • Moreno MA, Harper LC, Krueger RW, Dellaporta SL, Freeling M (1997) liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Gene Dev 11:616

    Article  CAS  PubMed  Google Scholar 

  • Muehlbauer GJ, Fowler JE, Freeling M (1997) Sectors expressing the homeobox gene liguleless3 implicate a time-dependent mechanism for cell fate acquisition along the proximal-distal axis of the maize leaf. Development 124:5097–5106

    Article  CAS  PubMed  Google Scholar 

  • Muehlbauer GJ, Fowler JE, Girard L, Tyers R, Harper L, Freeling M (1999) Ectopic expression of the maize homeobox gene liguleless3 alters cell fates in the leaf. Plant Physiol 119:651–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ort DR, Merchant SS, Jean A, Alice B, Blankenship RE, Ralph B, Roberta C, Pan Q, Xu Y, Li K, Peng Y, Zhan W, Li W, Li L, Yan J (2017) The genetic basis of plant architecture in 10 maize recombinant inbred line populations. Plant Physiol 175:858–873

    Article  Google Scholar 

  • Pepper G, Pearce R, Mock J (1977) Leaf orientation and yield of maize 1. Crop Sci 17:883–886

    Article  Google Scholar 

  • Russell W (1991) Genetic improvement of maize yields. Adv Agron 46:245–298

    Article  Google Scholar 

  • Shi Y, Wang X, Guo S, Ren Z, Ku L, Zhu Y, Li G, Qi J, Zhang X, Ren Z (2017) Detection of epistatic and environmental interaction QTLs for leaf orientation-related traits in maize. Plant Breeding 136:33–40

    Article  CAS  Google Scholar 

  • Strable J, Wallace JG, Unger-Wallace E, Briggs S, Bradbury P, Buckler ES, Vollbrecht E (2017) Maize YABBY genes drooping leaf1 and drooping leaf regulate plant architecture. Plant Cell 29:1622–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sylvester AW, Cande WZ, Freeling M (1990) Division and differentiation during normal and liguleless-1 maize leaf development. Development 110:985–1000

    Article  CAS  PubMed  Google Scholar 

  • Tian M, Tan G, Liu Y, Rong T, Huang Y (2009) Origin and evolution of Chinese waxy maize: evidence from the Globulin-1 gene. Genet Resour Crop Ev 56:247–255

    Article  CAS  Google Scholar 

  • Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Wang C, Xia J, Wu L, Xu G, Wu W et al (2019) Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 365:658

    Article  CAS  PubMed  Google Scholar 

  • Tollenaar M, Wu J (1999) Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci 39:1597–1604

    Article  Google Scholar 

  • Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Walsh J, Freeling M (2010) liguleless2 gene of maize functions during the transition from the vegetative to the reproductive shoot apex. Plant J 19:489–495

    Article  Google Scholar 

  • Walsh J, Waters CA, Freeling M (1998) The maize geneliguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade–sheath boundary. Gene Dev 12:208–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Zhu J, Li Z, Paterson A (1999) Mapping QTLs with epistatic effects and QTL× environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255–1264

    Article  Google Scholar 

  • Wang H, Liang Q, Li K, Hu X, Wu Y, Wang H, Liu Z, Huang C (2017) QTL analysis of ear leaf traits in maize (Zea mays L.) under different planting densities. Crop J 5:387–395

    Article  Google Scholar 

  • Whipple CJ, Kebrom TH, Weber AL, Yang F, Hall D, Meeley R, Schmidt R, Winter S, Ohlrogge A (1973) Leaf angle, leaf area, and corn (Zea mays L.) Yield 1. Agron J 65:395–397

    Article  Google Scholar 

  • De Wit (1965) Photosynthesis of Leaf Canopies. Pudoc (Agricultural research reports 663)

  • Yang J, Hu C, Hu H, Yu R, Xia Z, Ye X, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723

    Article  PubMed  Google Scholar 

  • Yang C, Tang D, Zhang L, Liu J, Rong T (2015a) Identification of QTL for ear row number and two-ranked versus many-ranked ear in maize across four environments. Euphytica 206:33–47

    Article  Google Scholar 

  • Yang G, Dong Y, Li Y, Wang Q, Shi Q, Zhou Q (2015b) Integrative detection and verification of QTL for plant traits in two connected RIL populations of high-oil maize. Euphytica 206:203–223

    Article  CAS  Google Scholar 

  • Yang C, Tang D, Qu J, Zhang L, Zhang L, Chen Z, Liu J (2016) Genetic mapping of QTL for the sizes of eight consecutive leaves below the tassel in maize (Zea mays L.). Theor Appl Genet 129:2191–2209

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Zhang J, Shi Y, Song Y, Wang T, Li Y (2006) QTL analysis for plant height and leaf angle by using different populations of maize. J Maize Sci 14:88–92 (in Chinese)

    CAS  Google Scholar 

  • Yuan L (2001) Breeding of super hybrid rice. Rice Research for Food Security & Poverty Alleviation International Rice Research Conference

  • Zhang J, Ku L, Han Z, Guo S, Liu H, Zhang Z, Cao L, Cui X, Chen Y (2014) The ZmCLA4 gene in the qLA4-1 QTL controls leaf angle in maize (Zea mays L.). J Exp Bot 65:5063–5076

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Huang C, Wu D, Qiao F, Li W, Duan L, Wang K, Xiao Y, Chen G, Liu Q (2017) High-throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth. Plant Physiol 173:1554–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Fang P, Zhang J, Peng Y (2018) QTL mapping for six ear leaf architecture traits under water-stressed and well-watered conditions in maize (Zea mays L.). Plant Breeding 137:60–72

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Basic Research Program of China (the “973” project, Grant No. 2014CB138203), the State Key Laboratory of Grassland Agro-Ecosystems, China (SKLGAE201509) and the National Natural Science Foundation of China (31101161).

Funding

The work was supported by the National Basic Research Program of China (the “973” project, Grant No. 2014CB138203), the State Key Laboratory of Grassland Agro-Ecosystems, China (SKLGAE201509) and the National Natural Science Foundation of China (31101161).

Author information

Authors and Affiliations

Authors

Contributions

JL and DT designed and supervised the study, DT, ZC, JN, QJ, PL, LW, JZ, CL performed the phenotypic data collection. DT analyzed the data and drafted the manuscript, DT and ZC revised and finalized the manuscript. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Jian Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, D., Chen, Z., Ni, J. et al. Identification of QTL for leaf angle at canopy-wide levels in maize. Euphytica 217, 75 (2021). https://doi.org/10.1007/s10681-021-02781-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-021-02781-4

Keywords

Navigation