Skip to main content

Advertisement

Log in

Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A major limiting factor for high productivity of maize (Zea mays L.) in dense planting is light penetration through the canopy. Plant architecture with a narrower leaf angle (LA) and an optimum leaf orientation value (LOV) is desirable to increase light capture for photosynthesis and production per unit area. However, the genetic control of the plant architecture traits remains poorly understood in maize. In this study, QTL for LA, LOV, and related traits were mapped using a set of 229 F2:3 families derived from the cross between compact and expanded inbred lines, evaluated in three environments. Twenty-five QTL were detected in total. Three of the QTL explained 37.4% and five of the QTL explained 53.9% of the phenotypic variance for LA and LOV, respectively. Two key genome regions controlling leaf angle and leaf orientation were identified. qLA1 and qLOV1 at nearest marker umc2226 on chromosome 1.02 accounted for 20.4 and 23.2% of the phenotypic variance, respectively; qLA5 and qLOV5 at nearest bnlg1287 on chromosome 5 accounted for 9.7 and 9.8% of the phenotypic variance, respectively. These QTL could provide useful information for marker-assisted selection in improving performance of plant architecture with regard to leaf angle and orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Austin DF, Lee M (1998) Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and nonstress environments. Crop Sci 38:1296–1308

    Article  CAS  Google Scholar 

  • Austin DF, Lee M, Veldboom LR (2001) Genetic mapping in maize with hybrid progeny across testers and generations: plant height and flowering. Theor Appl Genet 102:163–176

    Article  CAS  Google Scholar 

  • Beavis WD, Smith OS, Grant D, Fincher R (1994) Identi-fication of quantitative trait loci usinga small sample of topcrossed and F4 progeny from maize. Crop Sci 34:882–896

    Article  Google Scholar 

  • Berke T, Rocheford T (1995) Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize. Crop Sci 35:1542–1549

    Article  Google Scholar 

  • Chen P, Jiang L, Yu CY et al (2008) The identification and mapping of a tiller angle QTL on rice chromosome 9. Crop Sci 48:1799–1806

    Article  CAS  Google Scholar 

  • Duvick DN (1977) Genetic rates of gain in hybrid maize yields during the past 40 years. Maydica 22:187–196

    Google Scholar 

  • Duvick DN (1992) Genetic contributions to advances in yield of United States maize. Maydica 37:69–79

    Google Scholar 

  • Duvick DN (1997) What is yield? In: Edmeades GO (ed) Developing drought and low N-tolerant maize. CIMMYT, El Batan, Mexico, pp 332–335

  • Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.). Advances in agronomy, vol 86. Elsevier Academic Press Inc., San Diego, pp 83–145

    Google Scholar 

  • Duvick DN, Cassman KG (1999) Post-green revolution trends yield potential of temperate maize in the north-central United States. Crop Sci 39:1622–1630

    Article  Google Scholar 

  • Fellner M, Horton LA, Cocke AE, Stephens NR, Ford ED, Van Volkenburgh E (2003) Light interacts with auxin during leaf elongation and leaf angle development in young corn seedlings. Planta 216:366–376

    CAS  PubMed  Google Scholar 

  • Frova C, Krajewski P, di Fonzo N (1999) Genetic analysis of drought tolerance in maize by molecular markers. I. Yield components. Theor Appl Genet 99:280–288

    Article  Google Scholar 

  • Jiang C, Zeng ZB (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111–1127

    Google Scholar 

  • Jin J, Huang W, Gao JP, Yang J, Shi M, Zhu MZ, Luo D, Lin HX (2008) Genetic control of rice plant architecture under domestication. Nature Genet 40:1365–1369

    Article  CAS  PubMed  Google Scholar 

  • Juarez MT, Twigg RW, Timmermans MCP (2004) Specification of adaxial cell fate during maize leaf development. Development 131:4533–4544

    Article  CAS  PubMed  Google Scholar 

  • Kebrom TH, Brutnell TP (2007) The molecular analysis of the shade avoidance syndrome in the grasses has begun. J Exp Bot 58:3079–3089

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822

    Article  CAS  PubMed  Google Scholar 

  • Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194

    Article  Google Scholar 

  • Lambert RJ, Johnson RR (1978) Leaf angle, tassel morphology, and the performance of maize hybrids. Crop Sci 18:499–502

    Article  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Li DH (2001) History and review of the prospect of compact maize breeding. J Laiyang Agric Coll 18(1):1–6

    Google Scholar 

  • Li Z, Paterson AH, Pinson SRM, Khush GS (1998) A major gene, Tal and QTLs affecting tiller and leaf angles in rice. Crop Sci 38:12–19

    Article  Google Scholar 

  • Li ZK, Paterson AH, Pinson SRM, Stansei JW (1999) RFLP facilitated analysis of tiller and leaf angles in rice (Oryza sativa L.). Euphytica 109:79–84

    Article  CAS  Google Scholar 

  • Li PJ, Wang YH, Qian Q, Fu Z, Wang M, Zeng D, Li B, Wang X, Li J (2007) LAZY1 controls rice shoot gravitropism through regulating polar anxin transport. Cell Res 17:402–410

    CAS  PubMed  Google Scholar 

  • Lima MLA, Souza CL Jr, Bento DAV, Souza AP, Carlini-Garcia LA (2006) Mapping QTL for grain yield and plan t traits in a tropical maize population. Mol Breeding 17(3):227–239

    Article  Google Scholar 

  • Lu M, Zhou F, Xie CX, Li MS, Xu YB, Marilyn W, Zhang SH (2007) Construction of a SSR linkage map and mapping of quantitative trait loci(QTL)for leaf angle and leaf orientation with an elite maize hybrid. Heredita 29:113–1131

    Google Scholar 

  • Mickelson SM, Stuber CS, Senior L, Kaeppler SM (2002) Quantitative trait loci controlling leaf and tassel traits in a B73M o17 population of maize. Crop Sci 42:1902–1909

    Article  CAS  Google Scholar 

  • Milena L, Souza C, Bento D, Souza A, Carlini-Gracia L (2006) Mapping QTL for grain yield and plant traits in a tropical maize population. Mol Breeding 17:227–239

    Article  Google Scholar 

  • Pendleton JW, Smith GE, Winter SR, Johnston TJ (1968) Field investigations of the relationships of leaf angle in corn (Zea mays L.) to grain yield and apparent photosynthesis. Agron J 60:422–424

    Article  Google Scholar 

  • Pepper GE, Pearce RB, Mock JJ (1977) Leaf orientation and yield of maize. Crop Sci 17:883–886

    Article  Google Scholar 

  • Qian Q, He P, Teng S, Zeng DL, Zhu LH (2001) QTLs analysis of tiller angle in rice (Oryza sativa L.). Acta Genetica Sinica 28(1):29–32

    Google Scholar 

  • Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades GO, Hoisington DA (1996) Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor Appl Genet 92:905–914

    Article  CAS  Google Scholar 

  • Russell WA (1984) Agronomic performance of maize cultivars representing different eras of breeding. Maydica 29:375–390

    Google Scholar 

  • Russell WA (1985) Evaluations for plant, ear, and grain traits of maize cultivars representing 7 eras of breeding. Maydica 30:85–96

    Google Scholar 

  • Russell WA (1991) Genetic-improvement of maize yields. Adv Agron 46:245–298

    Article  Google Scholar 

  • Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol 24:105–109

    Google Scholar 

  • Schön CC, Utz FH, Groh S, Truberg B, Openshaw S (2004) Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics 167:485–498

    Article  PubMed  Google Scholar 

  • Shen S, Zhuang J, Bao J, Zheng K, Xia Y, Shu Q (2005) Analysis of QTLs with additive, epistasis and G × E interaction effects of the tillering angle trait in rice. J Agri Biotech 13:16–20

    CAS  Google Scholar 

  • Stuber CW, Edwards MD, Wendel J (1987) F1 Molecular marker facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits. Crop Sci 27:639–648

    Article  Google Scholar 

  • Stuber CW, Polacco M, Senior ML (1999) Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potentia1. Crop Sci 39:1571–1583

    Article  Google Scholar 

  • Sun SX (2003) Introduction on America corn yield contest in 2002. J Maize Sci 12:102

    Google Scholar 

  • Tan LB, Li XR, Liu FX, Sun XY, Li CG, Zhu ZF, Fu YC, Cai HW, Wang XK, Xie DX, Sun CQ (2008) Control of a key transition from prostrate to erect growth in rice domestication. Nature Genet 40(11):1360–1364

    Article  CAS  PubMed  Google Scholar 

  • Tang JH, Teng WT, Yan JB, Ma XQ, Meng YJ, Dai JR, Li JS (2007) Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize. Euphytica 155:117–124

    Article  CAS  Google Scholar 

  • Tollenaar M, Wu J (1999) Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci 39:1597–1604

    Article  Google Scholar 

  • Trachsel S, Messmer R, Stamp P, Hund A (2009) Mapping of QTLs for lateral and axile root growth of tropical maize. Theor Appl Genet 119:1413–1424

    Article  CAS  PubMed  Google Scholar 

  • Troyer F (2001) Temperate corn-background, behavior, and breeding. In: Hallauer AR (ed) Specialty corns. CRC Press, Boca Raton, pp 393–466

  • Veldboom LR, Lee M, Woodman WL (1994) Molecular marker facilitated studies of morphological traits in maize. II. Determination of QTLs for grain yield and yield components. Theor Appl Genet 89(4):451–458

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2007). Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)

  • Wang CL, Cheng FF, Sun ZH, Tang JH, Wu LC, Ku LX, Chen YH (2008a) Genetic analysis of photoperiod sensitivity in a tropical by temperate maize recombinant inbrid population using molecular markers. Theor Appl Genet 117:1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Xu YY, Zhang C, Ma Q, Joo SH, Kim SK, Xu ZH, Chong K (2008b) OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PLoS ONE 3(10):e3521

    Article  PubMed  Google Scholar 

  • Xu Y, McCouch SR, Shen Z (1998) Transgressive segregation of tiller angle in rice caused by complementary gene action. Crop Sci 38:12–19

    Article  Google Scholar 

  • Yang JS, Wang YJ, Li DH (2007) Study on cultiva tion of super-high yield summer maize. J Qingdao Agric Univ (Natural Science) 24:97–100

    Google Scholar 

  • Yu CY, Liu YQ, Jiang L (2005) QTLs mapping and genetic analysis of tiller angle in rice (Oryza sativa L.). Acta Genetica Sin 32:948–954

    CAS  Google Scholar 

  • Yu YT, Zhang JM, Shi YS, Song YC, Wang TY, Li Y (2006) QTL analysis for plant height and leaf angle by using different populations of maize. J Maize Sci 14(2):88–92

    CAS  Google Scholar 

  • Yu BS, Lin ZG, Li HX et al (2007a) TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J 52:891–898

    Article  CAS  PubMed  Google Scholar 

  • Yu BS, Lin ZW, Li HX, Li XJ, Li JY, Wang YH, Zhang X, Zhu ZF, Zhai WX, Wang XK, Xie DX, Sun CQ (2007b) QTLs mapping and genetic analysis of tiller angle in rice (Oryza sativa L.). Acta Genetica Sin 32(9):948–954

    Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Professor Robert Turgeon and Mrs. Georgene Strauch of Cornell University, USA, and Professor Li Jiansheng of China Agricultural University, for critically reviewing and revising the manuscript. This work was supported by grants from the National High Technology Research and Development Program of China (No. 2006AA001003) and National Basic Research Program of China (No. 2009CB118400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Chen.

Additional information

Communicated by A. Charcosset.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ku, L.X., Zhao, W.M., Zhang, J. et al. Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theor Appl Genet 121, 951–959 (2010). https://doi.org/10.1007/s00122-010-1364-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1364-z

Keywords

Navigation