Skip to main content
Log in

Genetic control of maize plant architecture traits under contrasting plant densities

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Plant architecture has played an important role in the adaptation of maize (Zea mays L.) hybrids to historical increases in plant density in order to maximize yields per unit area. At high density, a compact plant structure would allow for less interference by light among plants of the row and a deeper penetration of the radiation towards the lowest canopy layers, without compromising the capture of radiation at crop level. The genetic control of plant architecture traits of maize under contrasting plant densities remains poorly understood. In this work, traits related to leaf and stem architecture were phenotypically analyzed and QTLs were mapped using 160 RILs from the IBM B73 × Mo17 Syn4 population cultivated at low density and high density during 2013–2014 and 2014–2015 growing seasons in Buenos Aires province, Argentina. Forty-nine QTLs were detected on chromosomes 1, 3, 4, 5, 9 and 10. Most QTLs of vertical insertion angle of leaves and leaf orientation value (i.e., vertical angle affected by the curvature of leaves) were detected on chromosome 5 at high density and showed a high percentage of co-location. Detected QTLs for plant and ear height, and the relationship between them were concentrated on chromosome 9, with consistent effect under different density × environment combinations. These regions had large-effect QTLs and constitute hot spots that need to be studied in more detail to determine their potential use in breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alvarez Prado S, López CG, Gambín BL, Abertondo VJ, Borrás L (2013) Dissecting the genetic basis of physiological processes determining maize kernel weight using the IBM (B73 × Mo17) Syn4 population. Field Crops Res 145:33–43. https://doi.org/10.1016/j.fcr.2013.02.002

    Article  Google Scholar 

  • Amelong A, Gambín BL, Severini AD, Borrás L (2015) Predicting maize kernel number using QTL information. Field Crops Res 172:119–131

    Google Scholar 

  • Argenta G, Silva PRFd, Sangoi L (2001) Arranjo de plantas em milho: análise do estado-da-arte. Ciência rural Santa Maria Vol 31, n 6 (nov/dez 2001), p 1075-1084

    Google Scholar 

  • Bai W, Zhang H, Zhang Z, Teng F, Wang L, Tao Y, Zheng Y (2010) The evidence for non-additive effect as the main genetic component of plant height and ear height in maize using introgression line populations. Plant Breed 129(4):376–384

    Google Scholar 

  • Ballaré CL, Sánchez RA, Scopel AL, Casal JJ, Ghersa CM (1987) Early detection of neighbour plants by phytochrome perception of spectral changes in reflected sunlight. Plant Cell Environ 10(7):551–557. https://doi.org/10.1111/1365-3040.ep11604091

    Article  Google Scholar 

  • Beavis W, Grant D, Albertsen M, Fincher R (1991) Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet 83(2):141–145

    CAS  PubMed  Google Scholar 

  • Best NB, Hartwig T, Budka J, Fujioka S, Johal GS, Schulz B, Dilkes BP (2016) Nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis protein Dwarf1, identifying developmental interactions between brassinosteroids and gibberellins. Plant Physiol. https://doi.org/10.1104/pp.16.00399

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai H, Chu Q, Gu R, Yuan L, Liu J, Zhang X, Chen F, Mi G, Zhang F (2012) Identification of QTLs for plant height, ear height and grain yield in maize (Zea mays L.) in response to nitrogen and phosphorus supply. Plant Breed 131(4):502–510. https://doi.org/10.1111/j.1439-0523.2012.01963.x

    Article  CAS  Google Scholar 

  • Chang L, He K, Liu J, Xue J (2016) Mapping of QTLs for leaf angle in maize under different environments. J Maize Sci 4:49–55

    Google Scholar 

  • Chen X, Xu D, Liu Z, Yu T, Mei X, Cai Y (2015) Identification of QTL for leaf angle and leaf space above ear position across different environments and generations in maize (Zea mays L.). Euphytica 204(2):395–405. https://doi.org/10.1007/s10681-015-1351-1

    Article  CAS  Google Scholar 

  • Cochran WG (1952) The χ2 test of goodness of fit. Ann Math Stat 23(3):315–345

    Google Scholar 

  • Cook WB, Miles D (1988) Transposon mutagenesis of nuclear photosynthetic genes in Zea mays. Photosynth Res 18(1):33–59. https://doi.org/10.1007/bf00042979

    Article  CAS  PubMed  Google Scholar 

  • Danilevskaya ON, Meng X, Selinger DA, Deschamps S, Hermon P, Vansant G, Gupta R, Ananiev EV, Muszynski MG (2008) Involvement of the MADS-Box gene ZMM4 in floral induction and inflorescence development in maize. Plant Physiol 147(4):2054–2069. https://doi.org/10.1104/pp.107.115261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debernardi JM, Mecchia MA, Vercruyssen L, Smaczniak C, Kaufmann K, Inze D, Rodriguez RE, Palatnik JF (2014) Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity. Plant J 79(3):413–426. https://doi.org/10.1111/tpj.12567

    Article  CAS  PubMed  Google Scholar 

  • Demerec M (1926) Notes on Linkages in Maize. Am Nat 60(667):172–176. https://doi.org/10.1086/280083

    Article  Google Scholar 

  • Ding J, Zhang L, Chen J, Li X, Li Y, Cheng H, Huang R, Zhou B, Li Z, Wang J (2015) Genomic dissection of leaf angle in maize (Zea mays L.) using a four-way cross mapping population. PLoS ONE 10(10):e0141619

    PubMed  PubMed Central  Google Scholar 

  • Drouet J-L, Moulia B (1997) Spatial re-orientation of maize leaves affected by initial plant orientation and density. Agric For Meteorol 88(1–4):85–100

    Google Scholar 

  • Duncan WG (1971) Leaf angles, leaf area, and canopy photosynthesis. Crop Sci 11(4):482–485. https://doi.org/10.2135/cropsci1971.0011183X001100040006x

    Article  Google Scholar 

  • Duvick DN (2005) The Contribution of Breeding to Yield Advances in maize (Zea mays L.). In: Elsevier Inc (ed) Advances in agronomy, vol 86. Academic Press, Netherlands, pp 83–145. https://doi.org/10.1016/s0065-2113(05)86002-x

    Chapter  Google Scholar 

  • Dzievit MJ, Li X, Yu J (2019) Dissection of leaf angle variation in maize through genetic mapping and meta-analysis. Plant Genome. https://doi.org/10.3835/plantgenome2018.05.0024

    Article  PubMed  Google Scholar 

  • Girardin P, Tollenaar M (1994) Effects of intraspecific interference on maize leaf azimuth. Crop Sci 34:151–155

    Google Scholar 

  • Gonzalo M, Vyn TJ, Holland JB, McIntyre L (2006) Mapping density response in maize: a direct approach for testing genotype and treatment interactions. Genetics 173:331–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalo M, Holland J, Vyn T, McIntyre L (2010) ) Direct mapping of density response in a population of B73 × Mo17 recombinant inbred lines of maize (Zea mays L.). Heredity 104(6):583

    CAS  PubMed  Google Scholar 

  • Gou L, Xue J, Qi B, Ma B, Zhang W (2017) Morphological variation of maize cultivars in response to elevated plant densities. Agron J 109(4):1443–1453

    Google Scholar 

  • Hou X, Liu Y, Xiao Q, Wei B, Zhang X, Gu Y, Wang Y, Chen J, Hu Y, Liu H, Zhang J, Huang Y (2015) Genetic analysis for canopy architecture in an F2:3 population derived from two-type foundation parents across multi-environments. Euphytica 205(2):421–440. https://doi.org/10.1007/s10681-015-1401-8

    Article  Google Scholar 

  • Huang S, Gao Y, Li Y, Xu L, Tao H, Wang P (2017) Influence of plant architecture on maize physiology and yield in the Heilonggang River valley. Crop J 5(1):52–62

    Google Scholar 

  • Kebrom TH, Brutnell TP (2007) The molecular analysis of the shade avoidance syndrome in the grasses has begun. J Exp Bot 58(12):3079–3089. https://doi.org/10.1093/jxb/erm205

    Article  CAS  PubMed  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Hum Genet 12:172–175

    Google Scholar 

  • Kraja A, Dudley J (2000) QTL analysis of two maize inbred line crosses. Maydica 45(1):1–12

    Google Scholar 

  • Ku LX, Zhao WM, Zhang J, Wu LC, Wang CL, Wang PA, Zhang WQ, Chen YH (2010) Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theor Appl Genet 121(5):951–959. https://doi.org/10.1007/s00122-010-1364-z

    Article  CAS  PubMed  Google Scholar 

  • Ku LX, Zhang J, Guo SL, Liu HY, Zhao RF, Chen YH (2011) Integrated multiple population analysis of leaf architecture traits in maize. J Exp Bot 63(1):261–274. https://doi.org/10.1093/jxb/err277

    Article  CAS  PubMed  Google Scholar 

  • Ku L, Zhang L, Tian Z, Guo S, Su H, Ren Z, Wang Z, Li G, Wang X, Zhu Y (2015) Dissection of the genetic architecture underlying the plant density response by mapping plant height-related traits in maize (Zea mays L.). Mol Genet Genomics 290(4):1223–1233

    CAS  PubMed  Google Scholar 

  • Ku L, Ren Z, Chen X, Shi Y, Qi J, Su H, Wang Z, Li G, Wang X, Zhu Y (2016) Genetic analysis of leaf morphology underlying the plant density response by QTL mapping in maize (Zea mays L.). Mol Breed 36(5):63

    Google Scholar 

  • Lashkari M, Madani H, Ardakani MR, Golzardi F, Zargari K (2011) Effect of Plant Density on Yield and Yield Components of Different Corn (Zea mays L.). Am Eurasian J Agric Environ Sci 10(3):450–457

    Google Scholar 

  • Lee M, Sharopova N, Beavis WD, Grant D, Katt M, Blair D, Hallauer A (2002) Expanding the genetic map of maize with the intermated B73 × Mo17 (IBM) population. Plant Mol Biol 48(5–6):453–461

    CAS  PubMed  Google Scholar 

  • Li C, Li Y, Shi Y, Song Y, Zhang D, Buckler ES, Zhang Z, Wang T, Li Y (2015) Genetic control of the leaf angle and leaf orientation value as revealed by ultra-high density maps in three connected maize populations. PLoS ONE 10(3):e0121624

    PubMed  PubMed Central  Google Scholar 

  • Li X, Zhou Z, Ding J, Wu Y, Zhou B, Wang R, Ma J, Wang S, Zhang X, Xia Z (2016) Combined linkage and association mapping reveals QTL and candidate genes for plant and ear height in maize. Front Plant Sci 7:833

    PubMed  PubMed Central  Google Scholar 

  • Lima MdLA, de Souza CL, Bento DAV, de Souza AP, Carlini-Garcia LA (2006) Mapping QTL for grain yield and plant traits in a tropical maize population. Mol Breed 17(3):227–239

    Google Scholar 

  • Liu Z, Yu T, Mei X, Chen X, Wang G, Wang J, Liu C, Wang X, Cai Y (2014) QTL mapping for leaf angle and leaf space above ear position in maize. J Agric Biotechnol 22(2):177–187

    Google Scholar 

  • Liu X, Hao L, Kou S, Su E, Zhou Y, Wang R, Mohamed A, Gao C, Zhang D, Li Y, Li C, Song Y, Shi Y, Wang T, Li Y (2018) High-density quantitative trait locus mapping revealed genetic architecture of leaf angle and tassel size in maize. Mol Breed 39(1):7. https://doi.org/10.1007/s11032-018-0914-y

    Article  CAS  Google Scholar 

  • Lorieux M (2007) MapDisto, a free user-friendly program for computing genetic maps. In: Computer demonstration given at the Plant and Animal Genome XV conference, San Diego

  • Lu M, Zhou F, Xie C-X, Li M-S, Yunbi X, Warburton ML, Zhang S-H (2007a) Construction of a SSR linkage map and mapping of quantitative trait loci (QTL) for leaf angle and leaf orientation with an elite maize hybrid. Hereditas 29(9):1131–1138

    CAS  PubMed  Google Scholar 

  • Lu M, Zhou F, Xie C, Li M, Xu M (2007b) Construction of a SSR linkage map and mapping of quantitative trait loci (QTL) for leaf angle and leaf orientation with an elite maize hybrid. Hereditas 29:1131–1138

    CAS  PubMed  Google Scholar 

  • Maddonni GA, Otegui ME (1996) Leaf area, light interception, and crop development in maize. Field Crops Res 48(1):81–87. https://doi.org/10.1016/0378-4290(96)00035-4

    Article  Google Scholar 

  • Maddonni GA, Chelle M, Drouet J-L, Andrieu B (2001a) Light interception of contrasting azimuth canopies under square and rectangular plant spatial distributions: simulations and crop measurements. Field Crops Res 70:1–13

    Google Scholar 

  • Maddonni GA, Otegui ME, Cirilo AG (2001b) Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crops Res 71(3):183–193. https://doi.org/10.1016/S0378-4290(01)00158-7

    Article  Google Scholar 

  • Maddonni GA, Otegui ME, Andrieu B, Chelle M, Casal JJ (2002) Maize leaves turn away from neighbors. Plant Physiol 130(3):1181–1189. https://doi.org/10.1104/pp.009738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malosetti M, Ribaut JM, Vargas M, Crossa J, Van Eeuwijk FA (2008) A multi-trait multi-environment QTL mixed model with an application to drought and nitrogen stress trials in maize (Zea mays L.). Euphytica 161(1):241–257

    Google Scholar 

  • Mansfield BD, Mumm RH (2014) Survey of plant density tolerance in U.S. maize germplasm. Crop Sci 54(1):157–173. https://doi.org/10.2135/cropsci2013.04.0252

    Article  Google Scholar 

  • Margarido G, Pastina M, Souza A, Garcia A (2015) Multi-trait multi-environment quantitative trait loci mapping for a sugarcane commercial cross provides insights on the inheritance of important traits. Mol Breed 35(8):175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mickelson S, Stuber C, Senior L, Kaeppler S (2002) Quantitative trait loci controlling leaf and tassel traits in a B73 × Mo17 population of maize. Crop Sci 42(6):1902–1909

    CAS  Google Scholar 

  • Mikel MA, Dudley JW (2006) Evolution of North American dent corn from public to proprietary germplasm. Crop Sci 46(3):1193–1205

    Google Scholar 

  • Montgomery EG (1911) Correlation studies in corn. Lincoln, NE 108–159

  • Montoliu L, Puigdomènech P, Rigau J (1990) The Tubα3 gene from Zea mays: structure and expression in dividing plant tissues. Gene 94(2):201–207. https://doi.org/10.1016/0378-1119(90)90388-8

    Article  CAS  PubMed  Google Scholar 

  • Nardmann J, Ji J, Werr W, Scanlon MJ (2004) The maize duplicate genes narrow sheath1 and narrow sheath2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems. Development 131(12):2827–2839. https://doi.org/10.1242/dev.01164

    Article  CAS  PubMed  Google Scholar 

  • Neuffer G, England D (1995) Induced mutations with confirmed locations. Maize Genet Coop Newsl 69:43–46

    Google Scholar 

  • Pan Q, Xu Y, Li K, Peng Y, Zhan W, Li W, Li L, Yan J (2017) The genetic basis of plant architecture in 10 maize recombinant inbred line populations. Plant Physiol 175(2):858–873. https://doi.org/10.1104/pp.17.00709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park KJ, Sa KJ, Kim BW, Koh H-J, Lee JK (2014) Genetic mapping and QTL analysis for yield and agronomic traits with an F2:3 population derived from a waxy corn × sweet corn cross. Genes Genomics 36(2):179–189. https://doi.org/10.1007/s13258-013-0157-6

    Article  Google Scholar 

  • Peiffer JA, Romay MC, Gore MA, Flint-Garcia SA, Zhang Z, Millard MJ, Gardner CA, McMullen MD, Holland JB, Bradbury PJ (2014) The genetic architecture of maize height. Genetics. https://doi.org/10.1534/genetics.113.159152

    Article  PubMed  PubMed Central  Google Scholar 

  • Pelleschi S, Leonardi A, Rocher J-P, Cornic G, De Vienne D, Thevenot C, Prioul J-L (2006) Analysis of the relationships between growth, photosynthesis and carbohydrate metabolism using quantitative trait loci (QTLs) in young maize plants subjected to water deprivation. Mol Breed 17(1):21–39

    CAS  Google Scholar 

  • Pepper GE, Pearce RB, Mock JJ (1977) Leaf orientation and yield of maize1. Crop Sci 17(6):883–886. https://doi.org/10.2135/cropsci1977.0011183X001700060017x

    Article  Google Scholar 

  • Potts S (2014) Identifiation of QTL and candidate genes for plant density. Ph.D. dissertation, University of Illinois at Urbana-Champaign

  • Raihan MS, Liu J, Huang J, Guo H, Pan Q, Yan J (2016) Multi-environment QTL analysis of grain morphology traits and fine mapping of a kernel-width QTL in Zheng58 × SK maize population. Theor Appl Genet 129(8):1465–1477

    CAS  PubMed  Google Scholar 

  • Reymond M, Muller B, Leonardi A, Charcosset A, Tardieu F (2003) Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiol 131(2):664–675. https://doi.org/10.1104/pp.013839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reymond M, Muller B, Tardieu F (2004) Dealing with the genotype × environment interaction via a modelling approach: a comparison of QTLs of maize leaf length or width with QTLs of model parameters. J Exp Bot 55(407):2461–2472

    CAS  PubMed  Google Scholar 

  • Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation and speciation. Heredity 83(4):363–372

    PubMed  Google Scholar 

  • Rieseberg LH, Widmer A, Arntz AM, Burke JM (2002) Directional selection is the primary cause of phenotypic diversification. Proc Natl Acad Sci 99(19):12242–12245. https://doi.org/10.1073/pnas.192360899

    Article  CAS  PubMed  Google Scholar 

  • Ritchie S, Hanway J, Benson G, Herman J (1993) How a corn plant develops. Iowa state university cooperative extension service. Special report 48

  • Sa KJ, Park JY, Woo SY, Ramekar RV, Jang C-S, Lee JK (2015) Mapping of QTL traits in corn using a RIL population derived from a cross of dent corn × waxy corn. Genes Genomics 37(1):1–14. https://doi.org/10.1007/s13258-014-0223-8

    Article  Google Scholar 

  • Sangoi L, Gracietti MA, Rampazzo C, Bianchetti P (2002) Response of Brazilian maize hybrids from different eras to changes in plant density. Field Crops Res 79(1):39–51. https://doi.org/10.1016/S0378-4290(02)00124-7

    Article  Google Scholar 

  • SAS Institute Inc (2009) SAS OnlineDoc 9.4. SAS Institute, Cary

    Google Scholar 

  • Scanlon MJ, Schneeberger RG, Freeling M (1996) The maize mutant narrow sheath fails to establish leaf margin identity in a meristematic domain. Development 122(6):1683–1691

    CAS  PubMed  Google Scholar 

  • Sibov ST, De Souza Lopes, Jr C, Garcia AAF, Silva AR (2003) Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers. 2. Quantitative trait loci (QTL) for grain yield, plant height, ear height and grain moisture. Hereditas 139:107–115

    PubMed  Google Scholar 

  • Song Y, Rui Y, Bedane G, Li J (2016) Morphological characteristics of maize canopy development as affected by increased plant density. PLoS ONE 11(4):e0154084

    PubMed  PubMed Central  Google Scholar 

  • Subedi K, Ma B, Smith D (2006) Response of a leafy and non-leafy maize hybrid to population densities and fertilizer nitrogen levels. Crop Sci 46(5):1860–1869

    Google Scholar 

  • Tang D, Chen Z, Ni J, Jiang Q, Li P, Wang L, Zhou J, Li C, Liu J (2018) QTL mapping of leaf angle on eight nodes in maize enable the optimize canopy by differential operating of leaf angle at different levels of plant. bioRxiv:499665. https://doi.org/10.1101/499665

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277(5329):1063–1066

    CAS  PubMed  Google Scholar 

  • Tetio-Kagho F, Gardner F (1988) Responses of maize to plant population density. I. Canopy development, light relationships, and vegetative growth. Agron J 80(6):930–935

    Google Scholar 

  • Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43(2):159

    CAS  PubMed  Google Scholar 

  • Tollenaar M, Lee EA (2002) Yield potential, yield stability and stress tolerance in maize. Field Crops Res 75:161–169

    Google Scholar 

  • Troyer AF (1996) Breeding widely adapted, popular maize hybrids. Euphytica 92(1–2):163–174

    Google Scholar 

  • Van Ooijen JW (1999) LOD significance thresholds for QTL analysis in experimental populations of diploid species. Heredity 83(5):613

    PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2011) Windows QTL Cartographer 2.5. North Carolina State University, Raleigh

    Google Scholar 

  • Wang H, Liang Q, Li K, Hu X, Wu Y, Wang H, Liu Z, Huang C (2017) QTL analysis of ear leaf traits in maize (Zea mays L.) under different planting densities. Crop J 5(5):387–395. https://doi.org/10.1016/j.cj.2017.05.001

    Article  Google Scholar 

  • Wassom JJ (2013) Quantitative trait loci for leaf angle, leaf width, leaf length, and plant height in a maize (Zea mays L) B73 × Mo17 population. Maydica 58(3–4):318–321

    Google Scholar 

  • Wei X, Wang B, Peng Q, Wei F, Mao K, Zhang X, Sun P, Liu Z, Tang J (2015) Heterotic loci for various morphological traits of maize detected using a single segment substitution lines test-cross population. Mol Breed 35(3):94. https://doi.org/10.1007/s11032-015-0287-4

    Article  Google Scholar 

  • Williams W, Loomis R, Duncan W, Dovrat A, Nunez A (1968) Canopy architecture at various population densities and the growth and grain yield of corn2. Crop Sci 8(3):303–308

    Google Scholar 

  • Winkler R, Helentjaris T (1993) Mu tagging of dwarfs. Maize Genet Coop Newsl 67:111

    Google Scholar 

  • Yang C, Tang D, Qu J, Zhang L, Zhang L, Chen Z, Liu J (2016) Genetic mapping of QTL for the sizes of eight consecutive leaves below the tassel in maize (Zea mays L.). Theor Appl Genet 129(11):2191–2209

    CAS  PubMed  Google Scholar 

  • Yi Q, How X, Liu Y et al (2019) QTL analysis for plant architecture-related traits in maize under two different plant density conditions. Euphytica 215:148

    Google Scholar 

  • Yu Y, Zhang J, Shi Y, Song Y, Wang T, Li Y (2006) QTL analysis for plant height and leaf angle by using different populations of maize. J Maize Sci 14(2):88–92

    CAS  Google Scholar 

  • Zhang X, Huang C, Wu D, Qiao F, Li W, Duan L, Wang K, Xiao Y, Chen G, Liu Q, Xiong L, Yang W, Yan J (2017) High-throughput phenotyping and qtl mapping reveals the genetic architecture of maize plant growth. Plant Physiol 173(3):1554–1564. https://doi.org/10.1104/pp.16.01516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Fang P, Zhang J, Peng Y (2018) QTL mapping for six ear leaf architecture traits under water-stressed and well-watered conditions in maize (Zea mays L.). Plant Breed 137(1):60–72. https://doi.org/10.1111/pbr.12559

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank J. Fuentes and M. Rodriguez for their valuable assistance during the experiments. We also thank Dr. Santiago Alvarez Prado, Dr. Lucas Borrás and Dr. Maia Fradkin for his valuable collaboration with the QTL analysis, for supplying seeds of RILs population and their parental lines and for helping with the elaboration of the figures, respectively. This work was supported by the Universidad Nacional de Lomas de Zamora (Lomas CyT Program), the University of Buenos Aires (UBACyT 2014- 20020130100493BA), and the National Agency for the promotion of Science and Technology (PICT 2012-1260). S.J.P. Incognito had a graduate’s scholarship from the National Council of Research (CONICET) of Argentina. G.A. Maddonni is a member of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Juan Pablo Incognito.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Incognito, S.J.P., Maddonni, G.Á. & López, C.G. Genetic control of maize plant architecture traits under contrasting plant densities. Euphytica 216, 20 (2020). https://doi.org/10.1007/s10681-019-2552-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-019-2552-9

Keywords

Navigation