Skip to main content
Log in

Resistance to Phytophthora cinnamomi in Castanea spp. is under moderately high genetic control mainly because of additive genetic variance

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Susceptibility to Phytophthora cinnamomi is one of the main traits in Castanea sativa breeding programs. An inoculation experiment using 25 control pollinated families, with seedlings of these families cloned by cuttings, was conducted by soil infestation with one P. cinnamomi isolate. Forty-seven days after inoculation, foliar and root collar symptoms and root necrosis were recorded. The data were analyzed using a model based on restricted maximum pseudolikelihood methods of the GLIMMIX procedure to estimate the additive, dominance and epistatic components of the genetic variance, as well as the narrow sense heritability and the breeding values. At the end of the experiment, the percentages of dead plants ranged from 4% to 56% in C. sativa, and 18% to 20% in backcrosses to C. sativa, with much lower percentages in the F1 hybrids (C. crenata × C. sativa). Foliar symptoms were proportional to mortality, affecting 28% of the plants, but root collar lesions and root necrosis were more prevalent, affecting 65% and 84% of the plants, respectively. The proportions of genetic to phenotypic variance, 0.50–0.63, and the estimated values of narrow-sense heritability, 0.30–0.46, indicate that resistance to P. cinnamomi is under moderate to moderately high genetic control caused mainly by additive genetic variance. A high number of backcrosses to C. sativa showed good breeding values for resistance to P. cinnamomi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baldwin BG (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the compositae. Mol Phylogenet Evol 1:3–16

    Article  CAS  PubMed  Google Scholar 

  • Brasier CM (1996) Phytophthora cinnamomi and oak decline in southern Europe: environmental constraints including climate change. Ann Sci For 53:347–358

    Article  Google Scholar 

  • Breisch H (1995). Chataignes et marrons. CTIFL

  • Butcher TB, Stukely MJC, Chester GW (1984) Genetic variation in resistance of Pinus radiata to Phytophthora cinnamomi. For Ecol Manage 8:197–220

    Article  Google Scholar 

  • Caetano PCL, Ávila A, Sánchez ME, Trapero A, Coelho AC (2009) Phytophthora cinnamomi populations on Quercus forests from Spain and Portugal. Phytophthoras in forests and natural ecosystems. USDA-Forest Service, Albany, pp 261–269

    Google Scholar 

  • Dempster ER, Lerner IM (1950) Heritability of threshold characters. Genetics 35:212–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dickerson GE (1969) Techniques for research in quantitative animal genetics. Techniques and procedures in animal science research. Am Soc Anim Sci, Albany, pp 36–79

    Google Scholar 

  • Dobrowolski MP, Tommerup IC, Shearer BL, O’Brien PA (2003) Three clonal lineages of Phytophthora cinnamomi in Australia revealed by microsatellites. Phytopathology 93:695–704

    Article  CAS  PubMed  Google Scholar 

  • Elorrieta Artaza J (1949) El castaño en España. IFIE, Madrid

    Google Scholar 

  • Fahrmeir L, Tutz G (1994) Multivariate statistical modelling based on generalized linear models. Springer, New York

    Book  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics (4th edn). Longman Scientific and Technical, UK

    Google Scholar 

  • Fei S et al (2012) Modelling chestnut biogeografy for American chestnut restoration. Biodivers Res 18:754–768

    Google Scholar 

  • Fernández-López J (2011) Identification of the genealogy of interspecific hybrids between Castanea sativa, Castanea crenata and Castanea mollissima. For Syst 20(1):65–80

    Google Scholar 

  • Fernández-López et al. (2014) Guía de cultivo do castiñeiro para a produción de castaña. Xunta de Galicia, Consellería do Medio Rural e do Mar

  • Fernández-López J, Fernández-Cruz J (2015) Identification of traditional Galician sweet chestnut varieties using ethnographic and nuclear microsatellite data. Tree Genet Genomes 11:1–18

    Article  Google Scholar 

  • Fernández-López J, Zas R, Blanco R, Díaz R (2005) Geographic differentiation in adaptive traits of wild chestnut Spanish populations. Investigación Agraria, Sistemas y Recursos Forestales 14(1):13–26

    Article  Google Scholar 

  • Fernández-López J, Miranda-Fontaiña M, Furones-Pérez P (2008) Caracteres de selección en campo de clones de castaño híbrido (Castanea crenata x Castanea sativa) para la produccción de madera

  • Foster GS, Shaw DV (1988) Using clonal replicates to explore genetic variation in a perennial plant species. Theor Appl Genet 76:788–794

    Article  CAS  PubMed  Google Scholar 

  • Furones-Pérez MP, Fernández-López J (2009) Morphological and phenological description of 38 sweet chestnut cultivars (Castanea sativa Miller) in a contemporary collection. Span J Agric Res 7:829–843

    Article  Google Scholar 

  • Hardham AR (2005) Phytophthora cinnamomi. Mol. Plant Pathol 6:589–604

    CAS  Google Scholar 

  • Hardoim PR, Guerra R, Rosa da Costa AM, Serrano MS, Sánchez ME, Coelho ACHM (2016) Temporal metabolic profiling of the Quercus suber-Phytophthora cinnamomi system by middle infrared spectroscopy. For Pathol 46:122–133

    Article  Google Scholar 

  • Hüberli D, Tommerup IC, Hardy GEStJ (2000) False-negative isolations or absence of lesions may cause mis-diagnosis of diseased plants infected with Phytophthora cinnamomi. Australas Plant Pathol 29:164–169

    Article  Google Scholar 

  • Isik F (2009) Lecture 9: genetic correlations and correlated response. For 728, Quantitative forest genetic course notes, pp 1–23

  • Jung T, Orlikowski L, Henricot B et al (2015) Widespread Phytophthora infestations in European nurseries and forests, seminatural and horticultural ecosystems at high risk of Phytophthora diseases. For Pathol 46:134–163. https://doi.org/10.1111/efp.12239

    Article  Google Scholar 

  • Krebs SL, Wilson MD (2002) Resistance to Phytophthora root rot in contemporary rhododendron cultivars. HortScience 37:790–792

    Google Scholar 

  • Linde C, Drenth A, Wingfield MJ (1999) Gene and genotypic diversity of Phytophthora cinnamomi in South Africa and Australia revealed by DNA polymorphisms. Eur J Plant Pathol 105:667–680

    Article  CAS  Google Scholar 

  • Lopes Gomes A, Abreu C (1997) Heritabilidade de alguns aspectos da resistência da Castanea sativa Mill. á Phytophthora cinnamomi Rands. In: Congreso Forestal, pp 341–346

  • López-Villamor A, Míguez-Soto B, Fernández-López J (2017) Adventitious root formation in Castanea sp. semihard cuttings is under moderate genetic control caused mainly by non-additive genetic variance. Can J For Res 47:946–956

    Article  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantittative traits. Synauer Associates, Sunderlad

    Google Scholar 

  • Míguez-Soto B, Fernández-López J (2012) Genetic parameters and predicted selection responses for timber production traits in a Castanea sativa progeny trial: developing a breeding programme. Tree Genet Genomes 8(2):409–423

    Article  Google Scholar 

  • Míguez-Soto B, Fernández-López J (2014) Variation in adaptive traits among and within Spanish and European populations of Castanea sativa: selection of trees for timber production. New For 46:23–50

    Article  Google Scholar 

  • Míguez-Soto B, López-Villamor A, Fernández-López J (2016) Additive and non-additive genetic parameters for multipurpose traits in a clonally replicated incomplete factorial test of Castanea spp. Tree Genet Genomes 12:1–14

    Article  Google Scholar 

  • Miranda-Fontaiña ME, Fernández-López J, others (2013) Estudio de variabilidad genética de Castanea sativa en resistencia a Phytophthora cinnamomi, entre y dentro de poblaciones naturales de cuatro parques naturales de Galicia (España). In: Congreso Forestal 2013

  • Miranda-Fontaíña ME, Fernández-López J, Vettraino AM, Vannini A (2007) Resistance of Castanea clones to Phytophthora cinnamomi: testing and genetic control. Silvae Genet 56:11–21

    Article  Google Scholar 

  • Oßwald W, Fleischmann F, Rigling D, Diez J, Coelho AC, Cravador A, Dalio RJ, Horta M, Pfanz H, Robin G Sipos, Solla A, Cech T, Chambery A, Diamandis S, Hansen E, Jung T, Orlikowski LB, Parke J, Prospero S, Werres S (2014) Strategies of attack and defense in woody plant-Phytophthora interactions. For Pathol 44:169–190

    Article  Google Scholar 

  • Ploetz R, Schnell RJ, Haynes J (2002) Variable response of open-pollinated seedling progeny of avocado to Phytophthora root rot. Phytoparasitica 30:262–268

    Article  Google Scholar 

  • Ríos P, González M, Obregón S, Carbonero MD, Leal JR, Fernández P, de Haro A, Sánchez ME (2017) Brassica-based seedmeal biofumigation to control Phytophthora cinnamomi in the Spanish “dehesa” oak trees. Phytopathol Mediterr 56:392–399

    Google Scholar 

  • Robin C, Desprez-Loustau ML (1998) Testing variability in pathogenicity of Phytophthora cinnamomi. Eur J Plant Pathol 104:465–475

    Article  Google Scholar 

  • Robin C, Desprez-Loustau ML, Capron G, Delatour C (1998) First record in France and pathogenicity of Phytophthora cinnamomi on cork and holm oak. Ann Sci For 55:869–883

    Article  Google Scholar 

  • Robin C, Morel O, Vettraino AM et al (2006) Genetic variation in susceptibility to Phytophthora cambivora in European chestnut (Castanea sativa). For Ecol Manag 226:199–207

    Article  Google Scholar 

  • Romero MA, Sánchez JE, Jiménez JJ et al (2007) New pythium taxa causing root rot on Mediterranean Quercus species in South-West Spain and Portugal. J Phytopathol 155:289–295

    Article  Google Scholar 

  • Salesses G, Ronco L, Chauvin JE, Chapa J (1993) Amelioration genetique du chataignier. Mise au point de tests d’evaluation du comportement vis a vis de la maldie de l’encre. Arboric Fruit 458:23–31

    Google Scholar 

  • Sánchez ME, Caetano PC, Ferraz J, Trapero A (2002) Phytophthora disease of Quercus ilex in southwestern Spain. For Pathol 32:5–18

    Article  Google Scholar 

  • Sánchez ME, Andicoberry S, Trapero A (2005) Pathogenicity of three Phytophthora spp. causing late seedling rot of Quercus ilex ssp. ballota. For Pathol 35:115–125

    Article  Google Scholar 

  • Santos C, Machado H, Correia I et al (2015) Phenotyping Castanea hybrids for Phytophthora cinnamomi resistance. Plant Pathol 64:901–910

    Article  Google Scholar 

  • Santos C, Duarte S, Tedesco S, Fevereiro P, Costa RL (2017) Expression profiling of Castanea genes during resistant and susceptible interactions with the oomycete pathogen Phytophthora cinnamomi reveal possible mechanisms of immunity front. Plant Sci 8:515. https://doi.org/10.3389/fpls.2017.00515

    Article  Google Scholar 

  • SAS/STAT 9.2. User’s Guide (2009) SAS Institute Inc., Cary, NC, USA

  • Schad C, Solignat G, Grente J, Venot P (1952) Recherches sur le châtaignier à la Station de Brive. In: Annales d’Amelioration des Plantes, pp 369–453

  • Self SG, Lian KY (1987) Asymptotic properties of maximum likelihood ratio tests under nonstandard conditions. J Am Stat Assoc 82:605–610

    Article  Google Scholar 

  • Serrano MS, Fernández-Rebollo P, De Vita P, Sánchez ME (2012) Susceptibility of common herbaceous crops to Phytophthora cinnamomi and its influence on Quercus root rot in rangelands. Eur J Plant Pathol 134:409–414

    Article  Google Scholar 

  • Stukely MJC, Crane CE (1994) Genetically Based Resistance oi Eucalyptus marginata to Phytophthora cinnamomi. Phytopathology 84:650–656

    Article  Google Scholar 

  • Urquijo-Landaluce P (1957) La regeneración del castaño. Boletín de Patología Vegetal y Entomología Agrícola 22:217–232

    Google Scholar 

  • Van der Plank JE (1963) Plant diseases: epidemics and control. Academic Press, New York

    Google Scholar 

  • Vettraino AM, Morel O, Perlerou C, Robin S, Diamandis S, Vannini A (2005) Occurrence and distribution of Phytophthora species in European chestnut stands and their association with ink disease and crown decline. Eur J Plant Pathol 111(12):169–180

    Article  Google Scholar 

  • Vieitez E (1966) Resistencia a Phytophthora cambivora y Phytophthora cinnamomi de algunas variedades de castaños. Anales del Instituto Forestal de Investigaciones y Experiencias 1:61–74

    Google Scholar 

  • White TL, Adams WT, Neale DB (2007) Forest genetics. Cabi

Download references

Acknowledgements

This study was supported by the project ‘Conservation and breeding of chestnut (2013–2015)’, funded by sub-measure 323.2.3 of the plan ‘Conservation and improvement of natural heritage, convergence region’ from the European Agricultural Fund for Rural Development and by a scholarship (FPI-INIA number 32-495082) linked to the project ‘Genetic structure of populations of the chestnut tree (Castanea sativa Miller) RTA2009-00163-00-00. The authors thank the nursery people of the Forest Research of Lourizán for their help. We thank Scott Lloyd, PhD, from Edanz Group (www.edanzediting.com/ac), for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fernández-López.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 1271 kb)

Supplementary material 2 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Villamor, A., Fernández-López, J., Míguez-Soto, B. et al. Resistance to Phytophthora cinnamomi in Castanea spp. is under moderately high genetic control mainly because of additive genetic variance. Euphytica 214, 230 (2018). https://doi.org/10.1007/s10681-018-2309-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-018-2309-x

Keywords

Navigation