Skip to main content
Log in

Additive and non-additive genetic parameters for multipurpose traits in a clonally replicated incomplete factorial test of Castanea spp.

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Second-year traits of growth, stem form, terminal flushing, and survival were assessed in 1770 ramets from 295 clones of 16 full-sib families of Castanea spp. Additive, dominance, and epistatic genetic variances were estimated in a clonally replicated incomplete 5 × 4 factorial test. Parents of the mating design were selected mainly on their phenotypes for wood quality (Castanea sativa traditional varieties) and their proven resistance to Phytophthora spp. (Asiatic species and Castanea crenata × C. sativa hybrids). Additive genetic variances were estimated to be 1.7–9 times greater than the dominance components. Inferred epistatic variance components showed a significant role in controlling growth traits and branch length. Narrow- and broad-sense heritability estimates showed that terminal flushing date was the most heritable trait, followed by height. The high estimates of half-sib, full-sib, and clonal mean heritabilities for almost all traits suggest that different strategies of backwards and forwards selection could be proposed. The ranking of the breeding values of parents allow us to select the best parents for new crosses and extend the mating design. Favorable genetic correlations were found between growth traits and straightness, so multi-trait selection looks promising. Our results provide the first information on the partitioning of genetic variance in Castanea spp. and a starting point for devising new selection strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Araújo JA, Borralho NMG, Dehon G (2012) The importance and type of non‐additive genetic effects for growth in Eucalyptus globulus. Tree Genet Genomes 8:327–337

    Article  Google Scholar 

  • Baltunis BS, Huber DA, White TL, Goldfarb B, Stelzer HE (2005) Genetic effects of rooting loblolly pine stem cuttings from a partial diallel design. Can J For Res 35:1098–1108

    Article  Google Scholar 

  • Baltunis BS, Huber DA, White TL, Goldfarb B, Stelzer HE (2007a) Genetic analysis of early field growth of loblolly pine clones and seedlings from the same full-sib families. Can J For Res 37(1):195–205

    Article  Google Scholar 

  • Baltunis BS, Huber DA, White TL, Goldfarb B, Stelzer HE (2007b) Genetic gain from selection for rooting ability and early growth in vegetatively propagated clones of loblolly pine. Tree Genet Genomes 3:227–238

    Article  Google Scholar 

  • BOE, n° 27 (13/11/2007) Resolución del 25 de octubre de 2007, de la Dirección General de Agricultura, por la que se publica la ampliación del Catálogo nacional de materiales de base de diversas especies forestales de reproducción de las categorías identificada, cualificada y controlada, España

  • Breviglieri N (1951) Ricerche sulla biologia fiorale e di fruttificazione della Castanea sativa e Castanea crenata nel territorio di Vallombrosa. Centro di Studio Sul Castagno 1:15–49

    Google Scholar 

  • Burdon RD, Shelbourne CJA (1974) The use of vegetative propagules for obtaining genetic information. N Z J For Sci 4:418–425

    Google Scholar 

  • Burdon RD, Bannister MH, Low CB (1992) Genetic survey of Pinus radiate 4: variance structures and heritabilities in juvenile clones. N Z J For Sci 22(2/3):187–210

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Byram T, Lowe B (1986) General and specific combining ability estimates for growth in loblolly pine. P. 352–360 in Proceedings of Joint meeting of working parties on breeding theory, progeny testing and seed orchards. North Carolina State University, Industry Tree Improve. College of Natural Resources, Raleigh, NC

  • Cappa EP, Martín-Marcó D, Nikles G, Ian S (2013) Last performance of Pinus elliottii, Pinus caribaea, their F1, F2 and backcross hybrids and Pinus taeda to 10 years in the Mesopotamia region, Argentina. New For 44:197–218

    Article  Google Scholar 

  • Conedera M, Manetti MC, Giudici F, Amorini E (2004) Distribution and economic potential of the Sweet chestnut (Castanea sativa Mill). Eur Ecol Med 30:179–193

    Google Scholar 

  • Costa e Silva J, Borralho NMG, Potts BM (2004) Additive and non-additive genetic parameters from clonally replicated and seedling progenies of Eucalyptus globulus. Theor Appl Genet 108:1113–1119

    Article  PubMed  Google Scholar 

  • Costa e Silva J, Borralho NMG, Araújo JA, Vaillancourt RE, Potts BM (2009) Genetic parameters for growth, wood density and pulp yield in Eucalyptus globulus. Tree Genet Genomes 5:291–305

  • Dempster ER, Lerner IM (1950) Heritability of threshold characters. Genetics 35:212–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz R, Johnsen O, Fernández-López J (2009) Variation in spring and autumn freezing resistance among and within Spanish wild populations of Castanea sativa. Ann For Sci 66(7):708–712

    Article  Google Scholar 

  • Dickerson GE (1969) Techniques for research in quantitative animal genetics. In Techniques and procedures in animal science research. Am Soc Anim Sci, Albany, N.Y. pp 36–79

  • Ding C (2015) Ecological and quantitative genetics of Populus tremuloides in western Canada. PhD thesis, University of Alberta

  • Falconer DS (1989) Introduction to quantitative genetics, 4th edn. Longman Scientific and Technical Ltd., London, 438

    Google Scholar 

  • Fernández-López J (2011) Identification of the genealogy of interspecific hybrids between Castanea sativa, Castanea crenata and Castanea mollissima. Investig Agrar Sist Recur For 20(1):65–80

    Google Scholar 

  • Fernández-López J, Alía R (2003) EUFORGEN, Technical Guidelines for genetic conservation and use for chestnut (Castanea sativa). Int Plant Genet Res Inst, Rome

  • Fernández-López J, Fernández-Cruz J (2015) Identification of traditional Galician sweet chestnut varieties using ethnographic and nuclear microsatellite data. Tree Genet Genomes 11:111

    Article  Google Scholar 

  • Fernández-López J, Pereira-Lorenzo S, Miranda-Fontaiña ME (1992) Fog and substrate conditions for chestnut propagation by leafy cuttings. Symposium proceedings mass production technology for genetically improved fast growing species, Tome I. AFOCEL/IUFRO, pp 379–383

  • Fernández-López J, Zas R, Blanco-Silva R, Díaz R (2005) Geographic differentiation in adaptive traits of wild chestnut Spanish populations (Castanea sativa Miller). Investig Agrar Sist Recur For 14(1):13–16

    Article  Google Scholar 

  • Fernández-López J, Miranda-Fontaíña ME, Furones-Pérez P (2008) Caracteres de selección en campo de clones de castaño híbrido (Castanea crenata × Castanea sativa) para la producción de madera. Cuad Soc Esp Cienc For 24:39–43

    Google Scholar 

  • Foster GS (1986) Trends in genetic parameters with development and their influence on early selection for volume growth in loblolly pine. For Sci 32:944–959

    Google Scholar 

  • Foster GS, Shaw DV (1987) A tree improvement program to develop clonal of loblolly pine for reforestation. P. 17–21 in Proceedings of 19th South Forest Tree Improvement Conference, College Station, TX

  • Foster GS, Shaw DV (1988) Using clonal replicates to explore genetic variation in a perennial plant species. Theor Appl Genet 76:788–794

    Article  CAS  PubMed  Google Scholar 

  • Franklin EC (1979) Model relating levels of genetic variance to stand development of four North American conifers. Silv Genet 28:207–212

    Google Scholar 

  • Gallástegui C (1926) Técnica de la hibridación artificial del castaño. Bol Real Soc Cienc 26:88–94

    Google Scholar 

  • Isik F (2009) Analysis of diallel mating designs. Available: http://www4.ncsu.edu/~fisik/Analysis%20of%20Diallel%20Progeny%20Test%20with%20SAS.pdf

  • Isik F, Li B, Frampton LJ Jr (2003) Additive, dominance and epistatic genetic variance estimates from a replicated clonal test of loblolly pine. For Sci 49:77–88

    Google Scholar 

  • Isik F, Li B, Frampton J, Goldfarb B (2004) Efficiency of seedlings and rooted cuttings for testing and selection in Pinus taeda. For Sci 50:44–53

    Google Scholar 

  • Lerner IM (1958) The genetic basis of selection. Wiley, New York

    Google Scholar 

  • Libby WJ, Jund E (1962) Variance associated with cloning. Heredity 17:533–540

    Article  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates Inc, Sunderland, 980

    Google Scholar 

  • Makouanzi G, Bouvet JM, Denis M, Saya A, Mankessi F, Vigneron P (2014) Assessing the additive and dominance genetic effects of vegetative propagation ability in Eucalyptus—influence of modelling on genetic gain. Tree Genet Genomes 10(5):1243–1256

    Article  Google Scholar 

  • McKeand SE, Foster GS, Bridgwater FE (1986) Breeding systems for pedigree-controlled production populations of loblolly pine. In: Advanced Generation Breeding of Forest Trees, LA Agricultural Experiment Station, S Coop Ser Bull 309:53–61

  • McRae JB, Steltzer HE, Foster GS, Caldwell T (1993) Genetic test results from a tree improvement program to develop clones of loblolly pine for reforestation. In: 22nd Southern Forest Tree Improvement Conference, National Technical Information Service, Springfield VA, pp 424–433

  • Míguez-Soto B, Fernández-López J (2012) Genetic parameters and predicted selection responses for timber production traits in a Castanea sativa progeny trial: developing a breeding program. Tree Genet Genomes 8(2):409–423

    Article  Google Scholar 

  • Míguez-Soto B, Fernández-López J (2014) Variation in adaptive traits among and within Spanish and European populations of Castanea sativa: selection of trees for timber production. New For 46:23–50

    Article  Google Scholar 

  • Miranda-Fontaiña ME, Fernández-López J (1992) The micropropagation of chestnut tree: “in vivo” establishment and post-propagation growth. Mass production technology for genetically improved fast growing forest tree species. Symposium Bordeaux, France, Tome I: 421–426

  • Miranda-Fontaiña ME, Fernández-López J (1995) Aclimatación, cultivo en vivero y calidad de planta de castaño micropropagado. ITEA 9(3):149–156

    Google Scholar 

  • Miranda-Fontaiña ME, Fernández-López J (2001) Genotypic and environmental variation of Castanea crenata × Castanea sativa and Castanea sativa clones in aptitude to Micropropagation. Silv Genet 50(3–4):153–162

    Google Scholar 

  • Miranda-Fontaiña ME, Fernández-López J (2005) Effect of genotype on micropropagation and post-propagation growth of 35 commercial clones of Castanea sp. Acta Hortic (ISHS) 693:313–320

    Article  Google Scholar 

  • Miranda-Fontaíña ME, Fernández-López J (2008) Caracterización de la castaña producida por los clones híbridos de castaño. Congreso Internacional de Valorización do Monte. Consellería do Medio Rural. 19–22 de Novembro, Santiago de Compostela, Spain

  • Miranda-Fontaiña ME, Fernández-López J, Vettraino AM, Vannini A (2007) Resistance of Castanea clones to Phytophthora cinnamomi: testing and genetic control. Silv Genet 56(1):11–21

    Google Scholar 

  • Mullin TJ, Morgenstern EK, Park YS, Fowler DP (1992) Genetic parameters from a clonally replicated test of black spruce (Picea mariana). Can J For Res 22:24–36

    Article  Google Scholar 

  • Muranty H, Schermann N, Santi F, Dufour J (1998) Genetic parameters estimated from a wild cherry diallel: consequences for breeding. Silv Genet 47:249–257

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and biuoassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Paul AD, Foster GS, Caldwell T, McRae J (1997) Trends in genetic and environmental parameters for height, diameter, and volume in a multilocation clonal study with loblolly pine. For Sci 43:87–98

    Google Scholar 

  • Potts BM, Dungey HS (2004) Interspecific hybridization of Eucalyptus: key issues for breeders and geneticists. New For 27:115–138

    Article  Google Scholar 

  • Rajora OP, Zsuffa L, Yeh FC (1994) Variation, inheritance and correlations of growth characters and melampsora leaf rust resistance in full-sib families of Populus. Silv Genet 43:219–225

    Google Scholar 

  • Salesses G, Ronco L, Chauvin JE, Chapa J (1993) Amélioration génétique du chataignier, Mise au point de tests d’evaluation du comportement vis-à-vis de la maladie de léncre. Lárboriculture Fruitiere 458:23–31

    Google Scholar 

  • SAS/STAT 9.2. User’s Guide (2009) SAS Institute Inc., Cary, NC, USA

  • Solignat G, Chapa J (1975) La biologie florare du châtaignier. INVUFLEC, CTIFL, Paris

  • Stonecypher RW, McCullough RB (1986) Estimates of additive and non-additive genetic variances from a clonal diallel of Douglas-fir Pseudotsuga menziesii (Mirb.) Franco. In: IUFRO Conference. A joint meeting of working parties on breeding theory, progeny testing, seed orchards. Conference proceedings, North Carolina State University, Raleigh, NC, pp 211–227

  • Urquijo-Landaluze P (1957) La regeneración del castaño. Bol Veget Entom Agric 22:217–232

    Google Scholar 

  • Vieitez E (1960) Obtención de castaños resistentes a la enfermedad de la tinta. Centro Regional de Enseñanzas y experiencias Forestales de Lourizán, Pontevedra

  • Williams CG, Savolainen O (1996) Inbreeding depression in conifers; implications for breeding. For Sci 42:102–117

    Google Scholar 

  • Wu HX, Matheson AC (2005) Genotype by environment interactions in an Australia-wide radiata pine diallel mating experiment: implications for regionalized breeding. For Sci 51(1):29–40

    Google Scholar 

  • Yu Q, Tigerstedt PMA, Haapanen M (2001) Growth and phenology of hybrid aspen clones (Populus tremula L. × Populus tremuloides Michx). Silva Fenn 35:15–25

    Google Scholar 

Download references

Acknowledgments

This study was supported by the project “Conservation and breeding of chestnut (2013–2015),” funded by the sub-measure 323.2.3 of the Plan “Conservation and improvement of natural heritage, convergence region” from European Agricultural Fund for Rural Development (EAFRD). It is part of the Ph. D thesis which is being developed by the first author of this article. The authors thank Gabriel Toval for the development of the initial Breeding Program “Innovation and Forest Breeding Plan of Galicia” in 2010 and José María Mendaña for his help in the organization of the greenhouse. Finally, we are really grateful to Dr. Rowland Burdon for his helpful comments and suggestions for editing the manuscript.

Data archiving statement

Database of 1770 ramets from 290 clones of 16 full-sib families with phenotypic measurements for the nine adaptive traits considered in this study were submitted to the Database of Genetic Resources of Forest Research Centre Lourizán.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fernández-López.

Additional information

Communicated by R. Burdon

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOCX 27 kb)

Supplementary Fig. 1

Average values of each family, each individual within a family and the total population for terminal flushing and height. Values for the control clone H2522 were included. See the main text for details about each term (GIF 579 kb)

(GIF 624 kb)

High resolution image (TIF 73560 kb)

High resolution image (TIF 74253 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Míguez-Soto, B., López-Villamor, A. & Fernández-López, J. Additive and non-additive genetic parameters for multipurpose traits in a clonally replicated incomplete factorial test of Castanea spp.. Tree Genetics & Genomes 12, 47 (2016). https://doi.org/10.1007/s11295-016-1004-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-016-1004-0

Keywords

Navigation