Skip to main content
Log in

Genome-wide association mapping of glyphosate-resistance in Gossypium hirsutum races

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Glyphosate resistance is tightly related to the cotton industry. Glyphosate treatments of plants always result in high levels of shikimate accumulation and a sharp reduction in the relative dry weight, severely affecting normal growth. In this study, a broad range of variations were observed for the shikimate contents and relative dry weights in three natural environments, which significantly affected these phenotypic variations, but the genetic effects were the main contributors. Association mapping was applied to dissect the genetic basis of glyphosate-resistance in 202 accessions of Gossypium hirsutum races using 182 simple sequence repeat markers covering all of the cotton chromosomes. Based on the model controlling both population structure and relative kinship, 41 loci were detected as being significantly associated with relative dry weight, ranging from 13 to 70 %, which could explain part of the phenotypic variance, whereas another 48 loci were associated with shikimate accumulation, explaining 10–29 % of the phenotypic variation. Gene sequences, including the associated markers, were searched against the cotton genome project database of G. arboreum L., G. raimondii and G. hirsutum, and adenosine triphosphate-binding cassette transporter, which embodies the associated marker MON_CGR6680, was demonstrated by the Kyoto Encyclopedia of Genes and Genomes to be concerned with shikimate biosynthesis. Our results provide insights into the genetic basis of glyphosate resistance, and the detected loci may be used as candidate markers for the improvement of glyphosate-resistance in cotton breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdurakhmonov IY (2007) Exploiting genetic diversity. In: Ethridge D (ed) Plenary Presentations and Papers. Proceedings of World Cotton Research Conference-4. Lubbock, TX USA, Sept 10–4

  • Abdurakhmonov IY, Kohel RJ, Yu JZ, Pepper AE, Abdullaev AA, Kushanov FN, Salakhutdinov IB, Buriev ZT, Ssha S, Scheffler BE (2008) Molecular diversity and association mapping of fiber quality traits in exotic G. hirsutum L. germplasm. Genomics 92:478–487

    Article  CAS  PubMed  Google Scholar 

  • Amrhein N, Deus B, Gehrke P, Hc Steinrucken (1980) The site of the inhibition of the shikimate pathway by glyphosate. II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol 66:830–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aper J, De Riek J, Mechant E, De Cauwer B, Bulcke R, Reheul D (2010) The origin of herbicide-resistant chenopodium album: analysis of genetic variation and population structure. Weed Res 50(3):235–244

    Article  CAS  Google Scholar 

  • Becerril JM, Duke SO, Lydon J (1989) Glyphosate effects on shikimate pathway products in leaves and flowers of velvetleaf. Phytochemistry 28(3):695–699

    Article  CAS  Google Scholar 

  • Bertini CHCD, Schuster I, Sediyama T, Barros EG, Moreira MA (2006) Characterization and genetic diversity analysis of cotton cultivars using microsatellites. Genet Mol Biol 29(2):321–329

    Article  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  PubMed Central  Google Scholar 

  • Brevanlt T, Carletto J, Tribot J, Vanlerberqhe-Masutti F (2011) Insecticide use and competition shape the genetic diversity of the aphid Aphis gossypii in a cotton-growing landscape. Bull Entomol Res 101(4):407–413

    Article  Google Scholar 

  • Buckler ES, Thornsberry JM (2002) Plant molecular diversity and applications to genomics. Curr Opin Plant Biol 5:107–111

    Article  CAS  PubMed  Google Scholar 

  • Busi R, Vila-Aiub MM, Beckie HJ, Gaines TA, Goggin DE, Kaundun SS, Lacoste M, Neve P, Nissen SJ, Norsworthy JK (2013) Herbicide-resistant weeds: from research and knowledge to future needs. Evol Appl 6:1218–1221

    Article  PubMed  PubMed Central  Google Scholar 

  • Cha TS, Anne-Marie K, Chuah TS (2014) Identification and characterization of RAPD-SCAR markers linked to glyphosate-susceptible and -resistant biotypes of Eleusine indica (L) Gaertn. Mol Biol Rep 41:823–831

    Article  CAS  PubMed  Google Scholar 

  • Chen H (2013) Transcriptome squencing under drought stress, EST-SSR development and high density genetic linkage map construction in Gossypium Darwinii. Chinese Academy of Agricultural Sciences

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos T R Soc B 363:557–572

    Article  CAS  Google Scholar 

  • d’Eeckenbrugge GC, Lacape JM (2014) Distribution and Differentiation of Wild, Feral, and Cultivated Populations of Perennial Upland Cotton (Gossypium hirsutum L.) in Mesoamerica and the Caribbean. PLoS ONE 9(9): e107458. doi:10.1371/journal.pone.0107458

  • Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55:997–1004

    Article  CAS  PubMed  Google Scholar 

  • Dewick PM (1998) The biosynthesis of shikimate metabolites. Nat Prod Rep 15:17–58

    Article  CAS  PubMed  Google Scholar 

  • Duke SO, Hoagland RE (1985) Effects of glyphosate on metabolism of phenolic compounds. The herbicide glyphosate p75–91

  • Duke SO, Powles SB (2008) Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 64:319–325

    Article  CAS  PubMed  Google Scholar 

  • Ersoz ES, Yu J, Buckler ES (2007) Applications of linkage disequilibrium and association mapping in crop plants. Genomics-assisted crop improvement p97–119

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fang DD, Hinze LL, Percy RG, li P, Deng D, Thyssen G (2013) A microsatellite-based genome-wide analysis of genetic diversity and linkage disequilibrium in Upland cotton (Gossypium hirsutum L.) cultivars from major cotton-growing countries. Euphytica 191(3):391–401

    Article  CAS  Google Scholar 

  • Fedtke C, Duke SO (2005) Herbicides. Plant Toxicol 4:247–330

    Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Torralva F, Rojano-Delgado AM, Castro MDL, Mulleder N, Prado R (2012) Two non-target mechanisms are involved in glyphosate-resistant horseweed (Conyza canadensis L. Cronq.) biotypes. J Plant Physiol 169(17):1673–1679

    Article  CAS  PubMed  Google Scholar 

  • Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, Glemin S (2007) Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 24:1506–1517

    Article  CAS  PubMed  Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martínez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:p9–112

    Google Scholar 

  • Hu SA, Cui RX, Wang CY, Yao CB, Wang KB, Li SH (1994) Studies of G. hirsutum. Cotton Sci 6(Suppl):15–18

    Google Scholar 

  • Hutchinson JB (1951) Intra-specific differentiation in Gossypium hirsutum. Heredity 5:169–193

    Article  Google Scholar 

  • Jia YH, Sun JL, Wang XW (2014) Molecular diversity and association analysis of drought and salt tolerance in Gossypium hirsutum L. germplasm. J Integr Agr 13:1845–1853

    Article  CAS  Google Scholar 

  • Kalinowski S (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5(1):187–189

    Article  CAS  Google Scholar 

  • Kalivas A, Xanthopoulos F, Kehagia O, Tsaftaris AS (2011) Agronomic characterization, genetic diversity and association analysis of cotton cultivars using simple sequence repeat molecular markers. Genet Mol Res 10:208–217

    Article  CAS  PubMed  Google Scholar 

  • Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    Article  PubMed  PubMed Central  Google Scholar 

  • Kearney PC, Kaufman DD (1988) Herbicides: chemistry, degradation and mode of action. Marcel Dekker Inc., New York 3: xiii + 403 pp

  • Khan MA (2013) Genome-wide SSR high density genetic map construction from an interspecific cross of G. hirsutum L. X G. Tomentosum. Chinese Academy of Agricultural Sciences

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacape JM, Dessauw D, Rajab M, Noyer JL, Hau B (2007) Microsatellite diversity in tetraploid Gossypium germplasm: assembling a highly informative genotyping set of cotton SSRs. Mol Breeding 19(1):45–58

    Article  CAS  Google Scholar 

  • Liu S, Cantrell RG, McCarty JC, Stewart JM (2000) Simple sequence repeat-based assessment of genetic diversity in cotton race stock accessions. Crop Sci 40(5):1459–1469

    Article  CAS  Google Scholar 

  • Lydon J, Duke SO (1988) Glyphosate induction of elevated levels of hydroxybenzoic acids in higher plants. J Agr Food chem 36(4):813–818

    Article  CAS  Google Scholar 

  • Mauricio R (2001) Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat Rev Genet 2:370–381

    Article  CAS  PubMed  Google Scholar 

  • Murcray CE, Lewinger JP, Gauderman WJ (2008) Gene-environment and gene–gene interactions in GWAS. Genet Epidemiol 32(7):708–709

    Google Scholar 

  • Nol N, Tsikou D, Edi M, Livieratos IC, Giannopolitis CN (2012) Shikimate leaf disc assay for early detection of glyphosate resistance in Conyza canadensis and relative transcript levels of EPSPS and ABC transporter genes. Weed Res 52(3):233–241

    Article  CAS  Google Scholar 

  • Orcaray L, Zulet A, Zabalza A, Royuela M (2012) Impairment of carbon metabolism induced by the herbicide glyphosate. J Plant Physiol 169(1):27–33

    Article  CAS  PubMed  Google Scholar 

  • Pline WA, Wilcut JW, Duke SO, Edmisten KL, Wells R (2002) Tolerance and accumulation of shikimic acid in response to glyphosate applications in glyphosate-resistant and nonglyphosate-resistant cotton (Gossypium hirsutum L.). J Agr Food Chem 50:506–512

    Article  CAS  Google Scholar 

  • Powles SB, Lorraine-Colwill DF, Dellow JJ, Preston C (1998) Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia. Weed Sci 46(5):604–607

    CAS  Google Scholar 

  • Pratley J, Urwin N, Stanton R, Baines P, Broster J, Cullis K, Schafer D, Bohn J, Krueger R (1999) Resistance to glyphosate in Lolium rigidum. I. Bioevaluation. Weed Sci 47(4):405–411

    CAS  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci 103:18656–18661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rungis D, Llewellyn D, Dennis ES, Lyon BR (2005) Simple sequence repeat (SSR) markers reveal low levels of polymorphism between cotton (Gossypium hirsutum L.) cultivars. Aust J Agr Res 56(3):301–307

    Article  CAS  Google Scholar 

  • Said JI, Lin ZX, Zhang XL, Song MZ, Zhang JF (2013) A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genom. doi:10.1186/1471-2164-14-776

    Google Scholar 

  • Salamini F, Ozkan H, Brandolini A, Schafer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the near east. Nat Rev Genet 3:429–441

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schneider S, Roessll D, Excoffier L (2000) ARLEQUIN version 20: a software for population genetic data analysis. Department of Anthropology and Ecology, University of Geneva, Switzerland, Genetics and Biometry Laboratory

    Google Scholar 

  • Singh BK, Shaner DL (1998) Rapid determination of glyphosate injury to plants and identification of glyphosate-resistant plants. Weed Technol 12(3):527–530

    CAS  Google Scholar 

  • Song GL, Cui RX, Wang KB, Guo LP, Li SH, Wang CY, Zhang XD (1998) A rapid improved CTAB method for extraction of cotton genomic DNA. Cotton Sci 10:273–275

    Google Scholar 

  • Steinrvcken HC, Amrhein N (1980) The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochem Bioph Res Co 94(4):1207–1212

    Article  Google Scholar 

  • Stranger BE, Stahl EA, Raj T (2011) Progress and promise of genome-wide association studies for human complex trait genetics. Genetics 187:367–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tommasini L, Schnurbusch T, Fossati D, Mascher F, Keller B (2007) Association mapping of Stagonospora nodorum blotch resistance in modern European winter wheat varieties. Theor Appl Genet 115:697–708

    Article  CAS  PubMed  Google Scholar 

  • Tu JL, Zhang MJ, Wang XQ (2014) Genetic dissection of upland cotton (Gossypium hirsutum) cultivars developed in Hubei Province by mapped SSRs. Genet Mol Res 13:782–790

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Jiang N, Jia T, Leach L, Cockram J, Waugh R, Ramsay L, Thomas B, Luo Z (2011a) Genome-wide association mapping of agronomic and morphologic trait in highly structured populations of barley cultivars. Theor Appl Genet 124:233–246

    Article  PubMed  Google Scholar 

  • Wang XQ, Feng CH, Lin ZX, Zhang XL (2011b) Genetic diversity of sea-island cotton (Gossypium barbadense) revealed by mapped SSRs. Genet Mol Res 10:3620–3631

    Article  CAS  PubMed  Google Scholar 

  • Yan JB, Warburton M, Crouch J (2011) Association mapping for enhencing maize (Zea mays L.) genetic improvement. Crop Sci 51:433–449

    Article  Google Scholar 

  • Yang XH, Yan JB, Shah T, Warburton ML, Li Q, Li L, Gao YF, Chai C, Fu ZY, Zhou Y (2010) Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor Appl Genet 121:417–431

    Article  PubMed  Google Scholar 

  • Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wu YT, Guo WZ, Zhang TZ (2000) Fast screening of microsatellite markers in cotton with PAGE/silver staining. Cotton Sci 12:267–269

    CAS  Google Scholar 

  • Zhang Z, Buckler ES, Casstevens TM, Bradbury PJ (2009) Software engineering the mixed model for genome-wide association studies on large samples. Brief Bioinform 10:664–675

    Article  PubMed  Google Scholar 

  • Zhao KY, Aranzana MJ, Kim S, Lister C, Shindo C, Tang CL, Toomajian C, Zheng HG, Dean C, Marjoram P (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet. doi:10.1371/journal.pgen.0030004

    Google Scholar 

  • Zhao YL, Wang HM, Chen W (2014) Genetic structure, linkage disequilibrium and association mapping of verticillium wilt resistance in elite cotton (Gossypium hirsutum L.) germplasm population. PLoS ONE 9(1):e86308. doi:10.1371/journal.pone.0086308

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu CS, Gore M, Buckler ES, Yu JM (2008) Status and prospects of association mapping in plants. Plant genome 1(1):5–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the Essential Science Research Funds to National Non-profit Institutes of China (No. SJA1201), the Introduction of International Advanced Agriculture Science and Technology Plan of Chinese Agriculture Ministry (No. 2011-G1-04) and the National Program on Key Basic Research Project (No. 2010CB126000).

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflicts of interest

No conflict of interest exits in the submission of this manuscript, and the manuscript has been approved by all of the authors for publication. I would like to declare on behalf of my co-authors that the work described is original research that has not been published previously and is not under consideration for publication elsewhere, in whole or in part.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YY., Zhou, ZL., Wang, XX. et al. Genome-wide association mapping of glyphosate-resistance in Gossypium hirsutum races. Euphytica 209, 209–221 (2016). https://doi.org/10.1007/s10681-016-1663-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-016-1663-9

Keywords

Navigation