Skip to main content
Log in

Quantitative trait locus mapping of chlorophyll a fluorescence parameters using a recombinant inbred line population in maize

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Chlorophyll a fluorescence parameters, derived from its induction, known as the OJIP rise, are often used to characterize the structure and function of photosystem II (PSII). Under field conditions, structure and function of photosystems of crops can be affected by various environmental factors. This study was conducted to identify quantitative trait loci (QTLs) associated with chlorophyll fluorescence parameters in field-grown maize. During three growing seasons, a recombinant inbred line population, consisting of 228 lines, was evaluated for five chlorophyll fluorescence parameters, which indirectly measure: absorbed photon flux per cross section of leaf (ABS/CSo), maximum trapped exciton flux per cross section of leaf (TRo/CSo), electron transport flux from QA to QB per cross section of leaf (ETo/CSo), number of active PSII reaction centers (RCs) per cross section of leaf (RC/CSo), and the performance index on a cross section of leaf (PICS). Significant correlations were frequently observed among these chlorophyll fluorescence parameters. Three major genomic regions dispersed across chromosomes 1, 5, and 9 were detected to be associated with chlorophyll fluorescence parameters. The genomic region in chromosome bins 9.06–9.07 contained QTLs that not only showed pleiotropy for multiple chlorophyll fluorescence parameters but also showed stable expression and explained a large proportion of the phenotypic variation. Additionally, a QTL for grain yield was also detected in this important genomic region. The identified QTLs for chlorophyll fluorescence parameters in the present study may help elucidate plants’ responses to environmental cues and assist in developing marker-assisted selection breeding programs in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Czyczyło-Mysza I, Tyrka M, Marcińska I, Skrzypek E, Karbarz M, Dziurka M, Hura T, Dziurka K, Quarrie SA (2013) Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments. Mol Breed 32:189–210

    Article  PubMed Central  PubMed  Google Scholar 

  • Flood PJ, Harbinson J, Aarts MGM (2011) Natural genetic variation in plant photosynthesis. Trends Plant Sci 16:327–335

    Article  CAS  PubMed  Google Scholar 

  • Fracheboud Y, Ribaut JM, Vargas M, Messmer R, Stamp P (2002) Identification of quantitative trait loci for cold-tolerance of photosynthesis in maize (Zea mays L.). J Exp Bot 53:1967–1977

    Article  CAS  PubMed  Google Scholar 

  • Fracheboud Y, Jompuk C, Ribaut JM, Stamp P, Leipner J (2004) Genetic analysis of cold-tolerance of photosynthesis in maize. Plant Mol Biol 56:241–253

    Article  CAS  PubMed  Google Scholar 

  • Guo P, Baum M, Varshney RK, Graner A, Grando S, Ceccarelli S (2008) QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica 163:203–214

    Article  CAS  Google Scholar 

  • Gururani MA, Upadhyaya CP, Strasser RJ, Yu JW, Park SW (2013) Evaluation of abiotic stress tolerance in transgenic potato plants with reduced expression of PSII manganese stabilizing protein. Plant Sci 198:7–16

    Article  CAS  PubMed  Google Scholar 

  • Hamdani S, Qu M, Xin C-P, Li M, Chu C, Govindjee, Zhu X-G (2015) Variations between the photosynthetic properties of elite and landrace Chinese rice cultivars revealed by simultaneous measurements of 820 nm transmission signal and chlorophyll a fluorescence induction. J Plant Physiol (in press)

  • Hao D, Chao M, Yin Z, Yu D (2012) Genome-wide association analysis detecting significant single nucleotide polymorphisms for chlorophyll and chlorophyll fluorescence parameters in soybean (Glycine max) landraces. Euphytica 186:919–931

    Article  CAS  Google Scholar 

  • Jiang C, Zeng Z-B (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111–1127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jompuk C, Fracheboud Y, Stamp P, Leipner J (2005) Mapping of quantitative trait loci associated with chilling tolerance in maize (Zea mays L.) seedlings grown under field conditions. J Exp Bot 56:1153–1163

    Article  CAS  PubMed  Google Scholar 

  • Kalaji HM, Govindjee, Bosa K, Kościelniak J, Żuk-Gołaszewska K (2011) Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Exp Bot 73:64–72

    Article  CAS  Google Scholar 

  • Kalaji HM, Goltsev V, Bosa K, Allakhverdiev SI, Strasser RJ, Govindjee (2012) Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker. Photosynth Res 114:69–96

    Article  CAS  PubMed  Google Scholar 

  • Kalaji HM, Schansker G, Ladle RJ et al (2014) Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res 122:121–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knapp S, Stroup W, Ross W (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194

    Article  Google Scholar 

  • Li Z, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess Light. Annu Rev Plant Biol 60:239–260

    Article  CAS  PubMed  Google Scholar 

  • Li T, Liu L-N, Jiang C-D, Liu Y-J, Shi L (2014) Effects of mutual shading on the regulation of photosynthesis in field-grown sorghum. J Photochem Photobiol, B 137:31–38

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Munday JC Jr, Govindjee (1969a) Light-induced changes in the fluorescence yield of chlorophyll a in vivo: III. The dip and the peak in the fluorescence transient of Chlorella pyrenoidosa. Biophys J 9:1–21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Munday JC Jr, Govindjee (1969b) Light-induced changes in the fluorescence yield of chlorophyll a in vivo: IV. The effect of preillumination on the fluorescence transient of chlorella pyrenoidosa. Biophys J 9:22–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oukarroum A, Strasser RJ, Schansker G (2012) Heat stress and the photosynthetic electron transport chain of the lichen Parmelina tiliacea (Hoffm.) Ach. in the dry and the wet state: differences and similarities with the heat stress response of higher plants. Photosynth Res 111:303–314

    Article  CAS  PubMed  Google Scholar 

  • Papageorgiou GC, Govindjee (2011) Photosystem II fluorescence: slow changes–Scaling from the past. J Photochem Photobiol B 104:258–270

    Article  CAS  PubMed  Google Scholar 

  • Papageorgiou GC, Govindjee editors. (eds) (2004) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht

    Google Scholar 

  • Šimić D, Lepeduš H, Jurković V, Antunović J, Cesar V (2014) Quantitative genetic analysis of chlorophyll a fluorescence parameters in maize in the field environments. J Integr Plant Biol 56:695–708

    Article  PubMed  Google Scholar 

  • Stirbet A, Govindjee (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B 104:236–257

    Article  CAS  PubMed  Google Scholar 

  • Stirbet A, Govindjee (2012) Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I–P rise. Photosynth Res 113:15–61

    Article  CAS  PubMed  Google Scholar 

  • Stirbet A, Riznichenko GY, Rubin AB, Govindjee (2014) Modeling chlorophyll a fluorescence transient: relation to photosynthesis. Biochem Moscow 79:291–323

    Article  CAS  Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanisms, regulation and adaptation. Taylor & Francis, London, pp 445–483

    Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G, Govindjee, Mohanty P (eds) Chlorophyll fluorescence a signature of photosynthesis. advances in photosynthesis and respiration. Springer, Dordrecht, pp 321–362

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V (2010) Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. BBA-Bioenergetics 1797:1313–1326

    Article  CAS  PubMed  Google Scholar 

  • Tardieu F (2012) Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. J Exp Bot 63:25–31

    Article  CAS  PubMed  Google Scholar 

  • Thumma BR, Naidu BP, Chandra A, Cameron DF, Bahnisch LM, Liu CJ (2001) Identification of causal relationships among traits related to drought resistance in Stylosanthes scabra using QTL analysis. J Exp Bot 52:203–214

    Article  CAS  PubMed  Google Scholar 

  • Wang S, CJ B, ZB Z (2006) Cartographer V.2.5. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Wu F (2014) QTL analysis for fast chlorophyll fluorescence parameters and yield-related traits in maize. Master’s Thesis, Yangzhou University, China

  • Yang DL, Jing RL, Chang XP, Li W (2007) Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum). J Integr Plant Biol 49(5):646–654

    Article  CAS  Google Scholar 

  • Yin Z, Meng F, Song H, He X, Xu X, Yu D (2010) Mapping quantitative trait loci associated with chlorophyll a fluorescence parameters in soybean (Glycine max L.) Merr.). Planta 231:875–885

    Article  CAS  PubMed  Google Scholar 

  • Yin Z, Meng F, Song H, Chao M, Xu X, Deng D, Yu D (2011a) QTL mapping for fast chlorophyll fluorescence parameters in soybean. Agric Sci China 44:4980–4987 (in Chinese with English abstract)

    Google Scholar 

  • Yin Z, Meng F, Song H, Wang X, Chao M, Zhang G, Xu X, Deng D, Yu D (2011b) GmFtsH9 expression correlates with in vivo photosystem II function: chlorophyll a fluorescence transient analysis and eQTL mapping in soybean. Planta 234:815–827

    Article  CAS  PubMed  Google Scholar 

  • Yin Z, Wang Y, Wu F, Gu X, Bian Y, Wang Y, Deng D (2014) Quantitative trait locus mapping of resistance to Aspergillus flavus infection using a recombinant inbred line population in maize. Mol Breed 33:39–49

    Article  CAS  Google Scholar 

  • Zhang D, Song H, Cheng H, Hao D, Wang H, Kan G, Jin H, Yu D (2014) The acid phosphatase-encoding gene GmACP1 contributes to soybean tolerance to low-phosphorus stress. PLoS Genet 10:e1004061

    Article  PubMed Central  PubMed  Google Scholar 

  • Zurek G, Rybka K, Pogrzeba M, Krzyzak J, Prokopiuk K (2014) Chlorophyll a fluorescence in evaluation of the effect of heavy metal soil contamination on perennial grasses. PLoS One 9:e91475

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Jiangsu Natural Science Fund (BK20141272), the Agricultural Branch of the Technology Supported Program of Jiangsu Province (BE2014353, BE2013434), the Key Natural Science Project at the University of Jiangsu Province (11KJA210004), the Innovative Research Team of Universities in Jiangsu Province, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhitong Yin or Dexiang Deng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 133 kb)

Supplementary material 2 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Z., Qin, Q., Wu, F. et al. Quantitative trait locus mapping of chlorophyll a fluorescence parameters using a recombinant inbred line population in maize. Euphytica 205, 25–35 (2015). https://doi.org/10.1007/s10681-015-1380-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1380-9

Keywords

Navigation