Skip to main content

Advertisement

Log in

Climate change flood risks and post-flood agricultural and non-agricultural economic losses in flood-prone Bait households Muzaffargarh district of Punjab, Pakistan

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

In global perspective, climate change severity has amplified natural disasters while consecutive frequency of flood disasters more particularly in developing countries like Pakistan. These flood disasters have raised economic losses of flood-prone farming community inhabited in neighboring of rivers. This research work focused to investigate the flood risk household level effects on post flood losses in Punjab, Pakistan. In the couple of decades, Pakistan faced consecutive and frequent destructive flooding directional to millions of peoples displaced, extensive homes destruction, numerous fatalities, crops and cattle's losses. In this study per-tested and well-developed questionnaire was used for data collection of 380 flood-prone affected households of district Muzaffargarh. In generating households actual score of vulnerability from literature, indicators of adaptive capacity, sensitivity and exposure were applied where household level risk was determined as function of hazard and vulnerability. In empirical estimation, Kruskal–Wallis one-way variance analysis was employed to measure the relationship in household risk and flood impact in term of both non-agricultural and agricultural losses. Findings of the study illustrated that losses owing to flood is not a random function of natures impact while households having higher level of flood risk confronted higher level of non-agricultural and agricultural losses. These findings focused the significance of addressing underlying risk factors to reduce household vulnerability rather than simply responding to post crises emergencies. Higher flood risk areas household vulnerability must focus on priority basis through developing flood resistant homes, ease access of emergency food supply and evolving advance structure of early warning system. In reducing agricultural losses concerned authorities need to implement mature measures. Concerned authorities must assist crop farmers and vulnerable households to mitigate risks by using actions such as diversifying crops, execution of crop insurance policy and offering crop protection feasible actions regarding climate events such as floods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Notes

  1. United Nations Disaster Risk Reduction.

  2. Government of Pakistan.

  3. United Nations Development Programme.

  4. United Nations Children Funds.

  5. Provincial Disaster Management Authority.

  6. Temporary islands are usually generated within the area of the river in the local language Saraiki is formally known as Bait.

  7. International Strategy for Disaster Reduction.

  8. Gross Domestic Product.

  9. Provincial Disaster Management Authority.

  10. Pakistan Bureau of Statistics.

  11. Districts categorized according to flood vulnerability disaster high, medium, low https://pdma.punjab.gov.pk/system/files/vnl.JPG

  12. Pakistan Metrological Department.

  13. District Disaster Management Authority.

References

  • Abbas, A., Amjath-Babu, T. S., Kächele, H., Usman, M., Amjed Iqbal, M., Arshad, M., Adnan Shahid, M., & Müller, K. (2018). Sustainable survival under climatic extremes: Linking flood risk mitigation and coping with flood damages in rural Pakistan. Environmental Science and Pollution Research, 25, 32491–32505.

    Article  CAS  PubMed  Google Scholar 

  • Abbas, G., Ahmad, S., Ahmad, A., Nasim, W., Fatima, Z., Hussain, S., Ur Rehman, M. H., Khan, M. A., Hasanuzzaman, M., Fahad, S., & Hoogenboom, G. (2017). Quantification the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab, Pakistan. Agricultural and Forest Meteorology, 247, 42–55.

    Article  ADS  Google Scholar 

  • Aerts, J. C., Botzen, W. J., Clarke, K. C., Cutter, S. L., Hall, J. W., Merz, B., Michel-Kerjan, E., Mysiak, J., Surminski, S., & Kunreuther, H. (2018). Integrating human behavior dynamics into flood disaster risk assessment. Nature Climate Change, 8(3), 193–199.

    Article  ADS  Google Scholar 

  • Ahmad, D., & Afzal, M. (2020a). Climate change adaptation impact on cash crop productivity and income in Punjab province of Pakistan. Environmental Science and Pollution Research, 27, 30767–30777.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, D., & Afzal, M. (2020b). Flood hazards and factors influencing household flood perception and mitigation strategies in Pakistan. Environmental Science and Pollution Research, 27(13), 15375–15387.

    Article  PubMed  Google Scholar 

  • Ahmad, D., & Afzal, M. (2021). Flood hazards and livelihood vulnerability of flood-prone farm-dependent Bait households in Punjab, Pakistan. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-16443-4

    Article  PubMed  Google Scholar 

  • Ahmad, D., & Afzal, M. (2021). Impact of climate change on pastoralists’ resilience and sustainable mitigation in Punjab, Pakistan. Environment, Development and Sustainability, 23, 11406–11426.

    Article  Google Scholar 

  • Ahmad, D., & Afzal, M. (2022). Flood risk public perception in flash flood-prone areas of Punjab, Pakistan. Environmental Science and Pollution Research, 29(35), 53691–53703.

    Article  PubMed  Google Scholar 

  • Ahmad, D., & Afzal, M. (2023). Psychological distancing and floods risk perception relating to climate change in flood-prone Bait communities of Punjab, Pakistan. Environment, Development and Sustainability,. https://doi.org/10.1007/s10668-023-04049-4

    Article  PubMed  Google Scholar 

  • Ahmad, D., & Afzal, M. (2024). Livelihood diversification strategies adaption determinants in flood-prone Bait areas of Punjab, Pakistan. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-023-04435-y

    Article  Google Scholar 

  • Ahmad, D., Afzal, M., & Ishaq, M. (2023). Impacts of riverbank erosion and flooding on communities along the Indus River, Pakistan. Natural Hazards, 120, 131–152.

    Article  Google Scholar 

  • Ahmad, D., Afzal, M., & Rauf, A. (2019). Analysis of wheat farmers’ risk perceptions and attitudes: Evidence from Punjab. Pakistan. Natural Hazards, 95(3), 845–861.

    Article  Google Scholar 

  • Ahmad, D., Afzal, M., & Rauf, A. (2020). Environmental risks among rice farmers and factors influencing their risk perceptions and attitudes in Punjab. Pakistan. Environmental Science and Pollution Research, 27(17), 21953–21964.

    Article  PubMed  Google Scholar 

  • Ahmad, D., Afzal, M., & Rauf, A. (2021). Flood hazards adaptation strategies: A gender-based disaggregated analysis of farm-dependent Bait community in Punjab, Pakistan. Environment, Development and Sustainability, 23(1), 865–886.

    Article  Google Scholar 

  • Ahmad, D., Khurshid, S., & Afzal, M. (2023). Climate change vulnerability and multidimensional poverty in flood prone rural areas of Punjab, Pakistan: an application of multidimensional poverty index and livelihood vulnerability index. Environment, Development and Sustainability,. https://doi.org/10.1007/s10668-023-04207-8

    Article  PubMed  Google Scholar 

  • Ahmadalipour, A., Moradkhani, H., Castelletti, A., & Magliocca, N. (2019). Future drought risk in Africa: Integrating vulnerability, climate change, and population growth. Science of the Total Environment, 662, 672–686.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ahsan, M. N., & Warner, J. (2014). The socioeconomic vulnerability index: A pragmatic approach for assessing climate change led risks–A case study in the south-western coastal Bangladesh. International Journal of Disaster Risk Reduction, 8, 32–49.

    Article  Google Scholar 

  • Ajani, A., & van der Geest, K. (2021). Climate change in rural Pakistan: Evidence and experiences from a people- centered perspective. Sustainability Science, 16, 1999–2011.

    Article  Google Scholar 

  • Akukwe, T. I. (2019). Spatial analysis of the effects of flooding on food security in Agrarian communities of South Eastern Nigeria (Doctoral dissertation, University of Nairobi).

  • Alcántara-Ayala, I., Pasuto, A., & Cui, P. (2022). Disaster risk reduction in mountain areas: An initial overview on seeking pathways to global sustainability. Journal of Mountain Science, 19(6), 1838–1846.

    Article  PubMed  PubMed Central  Google Scholar 

  • Armaş, I. (2012). Multi-criteria vulnerability analysis to earthquake hazard of Bucharest, Romania. Natural Hazards, 63, 1129–1156.

    Article  Google Scholar 

  • Arnall, A. (2014). A climate of control: Flooding, displacement and planned resettlement in the Lower Zambezi River valley. Mozambique. the Geographical Journal, 180(2), 141–150.

    Article  Google Scholar 

  • Atanga, R. A., & Tankpa, V. (2021). Climate change, flood disaster risk and food security nexus in Northern Ghana. Frontiers in Sustainable Food Systems, 5, 706721.

    Article  Google Scholar 

  • Aven, T. (2016). Risk assessment and risk management: Review of recent advances on their foundation. European Journal of Operational Research, 253(1), 1–13.

    Article  MathSciNet  Google Scholar 

  • Balgah, R. A., Bang, H. N., & Fondo, S. A. (2019). Drivers for coping with flood hazards: Beyond the analysis of single cases. Jàmbá: Journal of Disaster Risk Studies, 11(1), 1–9.

    Article  Google Scholar 

  • Balica, S. F., Popescu, I., Beevers, L., & Wright, N. G. (2013). Parametric and physically based modelling techniques for flood risk and vulnerability assessment: A comparison. Environmental Modelling & Software, 41, 84–92.

    Article  Google Scholar 

  • Ballesteros-Cánovas, J. A., Allen, S., & Stoffel, M. (2019). The importance of robust baseline data on past flood events for regional risk assessment: A study case from Indian Himalayas. UNISDR global assessment report.

  • Ballesteros-Cánovas, J. A., Stoffel, M., St George, S., & Hirschboeck, K. (2015). A review of flood records from tree rings. Progress in Physical Geography, 39(6), 794–816.

    Article  ADS  Google Scholar 

  • Bansal, R., Ochoa, M., & Kiku, D. (2017). Climate change and growth risks (No. w23009). National Bureau of Economic Research.

  • Barredo, J. I. (2009). Normalised flood losses in Europe: 1970–2006. Natural Hazards and Earth System Sciences, 9(1), 97–104.

    Article  ADS  Google Scholar 

  • Barrett, K. (2019). Reducing wildfire risk in the wildland-urban interface: Policy, trends, and solutions. Idaho Law Review, 55, 3.

    Google Scholar 

  • Baumwoll, J. (2008). The value of indigenous knowledge for disaster risk reduction: A unique assessment tool for reducing community vulnerability to natural disasters. Webster University.

    Google Scholar 

  • Bernier, J. F., Chassiot, L., & Lajeunesse, P. (2021). Assessing bank erosion hazards along large rivers in the Anthropocene: a geospatial framework from the St. Lawrence fluvial system. Geomatics, Natural Hazards and Risk, 12(1), 1584–1615.

    Article  Google Scholar 

  • Berz, G. (2000, March). Flood disasters: lessons from the past—worries for the future. In Proceedings of the institution of civil engineers-water and maritime engineering (Vol. 142, No. 1, pp. 3–8). Thomas Telford Ltd.

  • Bhamani, S. (2022). Record flooding in Pakistan poses major health risks. Bmj, 378, o2148.

    Article  Google Scholar 

  • Bodoque, J. M., Amérigo, M., Díez-Herrero, A., García, J. A., Cortés, B., Ballesteros-Cánovas, J. A., & Olcina, J. (2016). Improvement of resilience of urban areas by integrating social perception in flash-flood risk management. Journal of Hydrology, 541, 665–676.

    Article  ADS  Google Scholar 

  • Bremond, P., Grelot, F., & Agenais, A. L. (2013). Flood damage assessment on agricultural areas: review and analysis of existing methods.

  • Bukhari, S. I. A., & Rizvi, S. H. (2015). Impact of floods on women: With special reference to flooding experience of 2010 flood in Pakistan. Journal of Geography & Natural Disasters, 5(2), 1–5.

    Google Scholar 

  • Burkman, P., Handler, S.D., Van Stappen, J., Johnson, S.E., Epstein, E., O’Connor, R., Schuurman, G.W., Prosperi, A., Briley, L.J., Cooper, D. and Cooper, M.J. (2021). Climate change vulnerability assessment at apostle islands national Lakeshore. In Northern Hardwood Conference 2021: Bridging Science and Management for the Future (p. 251).

  • Cea, L., & Costabile, P. (2022). Flood risk in urban areas: Modelling, management and adaptation to climate change. A review. Hydrology, 9(3), 50.

    Article  Google Scholar 

  • Chen, Y., Li, J., & Chen, A. (2021). Does high risk mean high loss: Evidence from flood disaster in southern China. Science of the Total Environment, 785, 147127.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Chen, Y., Wang, Y., Zhang, Y., Luan, Q., & Chen, X. (2020). Flash floods, land-use change, and risk dynamics in mountainous tourist areas: A case study of the Yesanpo Scenic Area, Beijing, China. International Journal of Disaster Risk Reduction, 50, 101873.

    Article  Google Scholar 

  • Cramer, W., Guiot, J., Fader, M., Garrabou, J., Gattuso, J. P., Iglesias, A., Lange, M. A., Lionello, P., Llasat, M. C., Paz, S., & Peñuelas, J. (2018). Climate change and interconnected risks to sustainable development in the Mediterranean. Nature Climate Change, 8(11), 972–980.

    Article  ADS  Google Scholar 

  • Cutter, S. L., & Finch, C. (2008). Temporal and spatial changes in social vulnerability to natural hazards. Proceedings of the National Academy of Sciences, 105(7), 2301–2306.

    Article  ADS  CAS  Google Scholar 

  • Daniell, H., Lin, C. S., Yu, M., & Chang, W. J. (2016). Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biology, 17(1), 1–29.

    Article  Google Scholar 

  • Das, B., Pal, S. C., Malik, S., & Chakrabortty, R. (2019). Living with floods through geospatial approach: A case study of Arambag CD Block of Hugli District, West Bengal. India. SN Applied Sciences, 1(4), 1–10.

    CAS  Google Scholar 

  • Deen, S. (2015). Pakistan 2010 floods. Policy gaps in disaster preparedness and response. International Journal of Disaster Risk Reduction, 12, 341–349.

    Article  Google Scholar 

  • Devi, S. (2022). Pakistan floods: Impact on food security and health systems. The Lancet, 400(10355), 799–800.

    Article  Google Scholar 

  • Diouf, A., & Gaye, A. T. (2015). A methodological framework for building an index for vulnerability assessment in rainfed agriculture. In Handbook of Climate Change Adaptation, pp. 3–15.

  • Dottori, F., Salamon, P., Bianchi, A., Alfieri, L., Hirpa, F. A., & Feyen, L. (2016). Development and evaluation of a framework for global flood hazard mapping. Advances in Water Resources, 94, 87–102.

    Article  ADS  Google Scholar 

  • Dou, X., Song, J., Wang, L., Tang, B., Xu, S., Kong, F., & Jiang, X. (2018). Flood risk assessment and mapping based on a modified multi-parameter flood hazard index model in the Guanzhong Urban Area, China. Stochastic Environmental Research and Risk Assessment, 32, 1131–1146.

    Article  Google Scholar 

  • Douglas, I., Garvin, S., Lawson, N., Richards, J., Tippett, J., & White, I. (2010). Urban pluvial flooding: A qualitative case study of cause, effect and nonstructural mitigation. Journal of Flood Risk Management, 3(2), 112–125.

    Article  Google Scholar 

  • Du, S., Shi, P., Van Rompaey, A., & Wen, J. (2015). Quantifying the impact of impervious surface location on flood peak discharge in urban areas. Natural Hazards, 76, 1457–1471.

    Article  Google Scholar 

  • Durodola, O. S. (2019). The impact of climate change induced extreme events on agriculture and food security: A review on Nigeria. Agricultural Sciences, 10(4), 487–498.

    Article  Google Scholar 

  • Englhardt, J., Biemans, H., Winsemius, H., & Ward, P. J. (2019). Flood Impacts on Agricultural Production-A Global Analysis. In Geophysical Research Abstracts (Vol. 21).

  • Fanta, V., Šálek, M., & Sklenicka, P. (2019). How long do floods throughout the millennium remain in the collective memory? Nature Communications, 10(1), 1–9.

    Article  CAS  Google Scholar 

  • Fedeski, M., & Gwilliam, J. (2007). Urban sustainability in the presence of flood and geological hazards: The development of a GIS-based vulnerability and risk assessment methodology. Landscape and Urban Planning, 83(1), 50–61.

    Article  Google Scholar 

  • Flanagan, B. E., Gregory, E. W., Hallisey, E. J., Heitgerd, J. L., & Lewis, B. (2011). A social vulnerability index for disaster management. Journal of Homeland Security and Emergency Management, 8(1), 0000102202154773551792.

    Article  Google Scholar 

  • Florsheim, J. L., Mount, J. F., & Chin, A. (2008). Bank erosion as a desirable attribute of rivers. BioScience, 58(6), 519–529.

    Article  Google Scholar 

  • Füssel, H. M. (2010). How inequitable is the global distribution of responsibility, capability, and vulnerability to climate change: A comprehensive indicator-based assessment? Global Environmental Change, 20(4), 597–611.

    Article  Google Scholar 

  • Gardner, J. S., & Dekens, J. (2007). Mountain hazards and the resilience of social–ecological systems: Lessons learned in India and Canada. Natural Hazards, 41, 317–336.

    Article  Google Scholar 

  • Gigović, L., Pamučar, D., Bajić, Z., & Drobnjak, S. (2017). Application of GIS-interval rough AHP methodology for flood hazard mapping in urban areas. Water, 9(6), 360.

    Article  Google Scholar 

  • Glago, F. J. (2019). Household disaster awareness and preparedness: A case study of flood hazards in Asamankese in the West Akim Municipality of Ghana. Jamba: Journal of Disaster Risk Studies, 11(1), 1–11.

    Google Scholar 

  • Gorst, C., Kwok, C. S., Aslam, S., Buchan, I., Kontopantelis, E., Myint, P. K., Heatlie, G., Loke, Y., Rutter, M. K., & Mamas, M. A. (2015). Long-term glycemic variability and risk of adverse outcomes: A systematic review and meta-analysis. Diabetes Care, 38(12), 2354–2369.

    Article  CAS  PubMed  Google Scholar 

  • Gould, I. J., Wright, I., Collison, M., Ruto, E., Bosworth, G., & Pearson, S. (2020). The impact of coastal flooding on agriculture: A case-study of Lincolnshire, United Kingdom. Land Degradation & Development, 31(12), 1545–1559.

    Article  Google Scholar 

  • Government of Pakistan (GOP), (2022) Economic Survey of Pakistan (2021–22) Ministry of Finance, Finance division Islamabad, Government of Pakistan.

  • Gravley, D. (2001). Risk, hazard, and disaster. University of Canterbury.

    Google Scholar 

  • Hahn, M. B., Riederer, A. M., & Foster, S. O. (2009). The Livelihood Vulnerability Index: A pragmatic approach to assessing risks from climate variability and change—A case study in Mozambique. Global Environmental Change, 19(1), 74–88.

    Article  Google Scholar 

  • Hamidi, A. R., Jing, L., Shahab, M., Azam, K., Atiq Ur Rehman Tariq, M., & Ng, A. W. (2022). Flood exposure and social vulnerability analysis in rural areas of developing countries: An empirical study of Charsadda District, Pakistan. Water, 14(7), 1176.

    Article  CAS  Google Scholar 

  • Hamidi, A. R., Wang, J., Guo, S., & Zeng, Z. (2020). Flood vulnerability assessment using MOVE framework: A case study of the northern part of district Peshawar, Pakistan. Natural Hazards, 101, 385–408.

    Article  Google Scholar 

  • Haque, A., & Jahan, S. (2015). Impact of flood disasters in Bangladesh: A multi-sector regional analysis. International Journal of Disaster Risk Reduction, 13, 266–275.

    Article  Google Scholar 

  • Hewitt, K., & Mehta, M. (2012). Rethinking risk and disasters in mountain areas. Journal of Alpine Research Revue de géographie alpine. https://doi.org/10.4000/rga.1653

    Article  Google Scholar 

  • Hussain, M., Tayyab, M., Zhang, J., Shah, A. A., Ullah, K., Mehmood, U., & Al-Shaibah, B. (2021). GIS-based multi-criteria approach for flood vulnerability assessment and mapping in district Shangla: Khyber Pakhtunkhwa. Pakistan. Sustainability, 13(6), 3126.

    Article  Google Scholar 

  • International Strategy for Disaster Reduction. (2004). Living with risk: A global review of disaster reduction initiatives.

  • Ishaque, W., Tanvir, R., & Mukhtar, M. (2022). Climate Change and Water Crises in Pakistan: Implications on Water Quality and Health Risks. Journal of Environmental and Public Health, 2022, 5484561–5484561.

    Article  PubMed  PubMed Central  Google Scholar 

  • Islam, M. N., Malak, M. A., & Islam, M. N. (2013). Community-based disaster risk and vulnerability models of a coastal municipality in Bangladesh. Natural Hazards, 69, 2083–2103.

    Article  Google Scholar 

  • Jamshed, A., Rana, I. A., Mirza, U. M., & Birkmann, J. (2019). Assessing relationship between vulnerability and capacity: An empirical study on rural flooding in Pakistan. International Journal of Disaster Risk Reduction, 36, 101109.

    Article  Google Scholar 

  • Johann, G., & Leismann, M. (2017). How to realise flood risk management plans efficiently in an urban area–the Seseke project. Journal of Flood Risk Management, 10(2), 173–181.

    Article  Google Scholar 

  • Judi, D. R., Burian, S. J., & McPherson, T. N. (2014). Impacts of elevation data spatial resolution on two-dimensional dam break flood simulation and consequence assessment. Journal of Water Resources Planning and Management, 140(2), 194–200.

    Article  Google Scholar 

  • Kam, P. M., Aznar-Siguan, G., Schewe, J., Milano, L., Ginnetti, J., Willner, S., McCaughey, J. W., & Bresch, D. N. (2021). Global warming and population change both heighten future risk of human displacement due to river floods. Environmental Research Letters, 16(4), 044026.

    Article  ADS  Google Scholar 

  • Kappes, M. S., Papathoma-Koehle, M., & Keiler, M. (2012). Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Applied Geography, 32(2), 577–590.

    Article  Google Scholar 

  • Kellens, W., Terpstra, T., & De Maeyer, P. (2013). Perception and communication of flood risks: A systematic review of empirical research. Risk Analysis: An International Journal, 33(1), 24–49.

    Article  Google Scholar 

  • Keshavarz Ghorabaee, M., Amiri, M., Zavadskas, E. K., & Antucheviciene, J. (2017). Supplier evaluation and selection in fuzzy environments: A review of MADM approaches. Economic Research-Ekonomska Istraživanja, 30(1), 1073–1118.

    Article  Google Scholar 

  • Khan, J., Saleem, K., Asim, S., Khan, A., Ahmed, S., Qamar, A., Tousif, M.I., Khan, F.A., Shafiq, N. & Qaisrani, M.M. (2022). Cultural and Socio- Economic Perspective of Some Promising Edible Plants from Northern Pakistan. In Edible Plants in Health and Diseases: Volume 1: Cultural, Practical and Economic Value (pp. 77–105). Singapore: Springer Nature Singapore.

  • Khan, I., Lei, H., Shah, A. A., Khan, I., & Muhammad, I. (2021). Climate change impact assessment, flood management, and mitigation strategies in Pakistan for sustainable future. Environmental Science and Pollution Research, 28, 29720–29731.

    Article  PubMed  Google Scholar 

  • Khan, S. (2012). Vulnerability assessments and their planning implications: A case study of the Hutt Valley, New Zealand. Natural Hazards, 64, 1587–1607.

    Article  Google Scholar 

  • Khayyam, U., & Munir, R. (2022). Flood in mountainous communities of Pakistan: How does it shape the livelihood and economic status and government support? Environmental Science and Pollution Research, 29(27), 40921–40940.

    Article  PubMed  Google Scholar 

  • Khosravi, K., Shahabi, H., Pham, B. T., Adamowski, J., Shirzadi, A., Pradhan, B., Dou, J., Ly, H. B., Gróf, G., Ho, H. L., & Hong, H. (2019). A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods. Journal of Hydrology, 573, 311–323.

    Article  ADS  Google Scholar 

  • Kimaro, E. G., Mor, S. M., & Toribio, J. A. L. (2018). Climate change perception and impacts on cattle production in pastoral communities of northern Tanzania. Pastoralism, 8(1), 1–16.

    Article  Google Scholar 

  • Kirsch, T. D., Wadhwani, C., Sauer, L., Doocy, S., & Catlett, C. (2012). Impact of the 2010 Pakistan floods on rural and urban populations at six months. PLoS Currents. https://doi.org/10.1371/2F4fdfb212d2432

    Article  PubMed  PubMed Central  Google Scholar 

  • Kreft, C., Huber, R., Wuepper, D., & Finger, R. (2021). The role of non-cognitive skills in farmers’ adoption of climate change mitigation measures. Ecological Economics, 189, 107169.

    Article  Google Scholar 

  • Kret, E., Czop, M., & Pietrucin, D. (2017). Requirements for numerical hydrogeological model implementation for predicting the environmental impact of the mine closure based on the example of the Zn. In 13th International Mine Water Association Congress–Mine Water & Circular Economy. Lappeenranta University of Technology, Lappeenranta (pp. 703–710).

  • Kron, W. (2015). Flood disasters—a global perspective. Water Policy, 17(S1), 6–24.

    Article  Google Scholar 

  • Kundzewicz, Z. W., Stoffel, M., Wyżga, B., Ruiz-Villanueva, V., Niedźwiedź, T., Kaczka, R., Ballesteros-Cánovas, J. A., Pińskwar, I., Łupikasza, E., Zawiejska, J., & Mikuś, P. (2017). Changes of flood risk on the northern foothills of the Tatra Mountains. Acta Geophysica, 65, 799–807.

    Article  ADS  Google Scholar 

  • Lebel, L., Manuta, J. B., & Garden, P. (2011). Institutional traps and vulnerability to changes in climate and flood regimes in Thailand. Regional Environmental Change, 11, 45–58.

    Article  Google Scholar 

  • Linnekamp, F., Koedam, A., & Baud, I. S. A. (2011). Household vulnerability to climate change: Examining perceptions of households of flood risks in Georgetown and Paramaribo. Habitat International, 35(3), 447–456.

    Article  Google Scholar 

  • Liu, W. C., Hsieh, T. H., & Liu, H. M. (2021). Flood risk assessment in urban areas of southern Taiwan. Sustainability, 13(6), 3180.

    Article  Google Scholar 

  • Lydie, M. (2022). Droughts and Floodings Implications in Agriculture Sector in Rwanda: Consequences of Global Warming. In The Nature, Causes, Effects and Mitigation of Climate Change on the Environment. IntechOpen.

  • Mahmood, F., Khokhar, M. F., & Mahmood, Z. (2020). Examining the relationship of tropospheric ozone and climate change on crop productivity using the multivariate panel data techniques. Journal of Environmental Management, 272, 111024.

    Article  CAS  PubMed  Google Scholar 

  • Matsa, M., & Mupepi, O. (2022). Flood risk and damage analysis in urban areas of Zimbabwe. A case of 2020/21 rain season floods in the city of Gweru. International Journal of Disaster Risk Reduction, 67, 102638.

    Article  Google Scholar 

  • Mavhura, E., Manyena, B., & Collins, A. E. (2017). An approach for measuring social vulnerability in context: The case of flood hazards in Muzarabani district, Zimbabwe. Geoforum, 86, 103–117.

    Article  Google Scholar 

  • Mavhura, E., Manyena, S. B., Collins, A. E., & Manatsa, D. (2013). Indigenous knowledge, coping strategies and resilience to floods in Muzarabani, Zimbabwe. International Journal of Disaster Risk Reduction, 5, 38–48.

    Article  Google Scholar 

  • Mazzorana, B., Ruiz-Villanueva, V., Marchi, L., Cavalli, M., Gems, B., Gschnitzer, T., Mao, L., Iroumé, A., & Valdebenito, G. (2018). Assessing and mitigating large wood-related hazards in mountain streams: Recent approaches. Journal of Flood Risk Management, 11(2), 207–222.

    Article  Google Scholar 

  • McClymont, K., Morrison, D., Beevers, L., & Carmen, E. (2020). Flood resilience: A systematic review. Journal of Environmental Planning and Management, 63(7), 1151–1176.

    Article  Google Scholar 

  • McMichael, A. J., & Lindgren, E. (2011). Climate change: Present and future risks to health, and necessary responses. Journal of Internal Medicine, 270(5), 401–413.

    Article  CAS  PubMed  Google Scholar 

  • Mukhtar, A. (2023). Pakistan in Context: A Comparative Analysis of Energy Security Profile of South Asian Countries. In The Dilemma of Energy Security (pp. 181–231). Brill.

  • Munpa, P., Kittipongvises, S., Phetrak, A., Sirichokchatchawan, W., Taneepanichskul, N., Lohwacharin, J., & Polprasert, C. (2022). Climatic and hydrological factors affecting the assessment of flood hazards and resilience using modified UNDRR Indicators: Ayutthaya, Thailand. Water, 14(10), 1603.

    Article  Google Scholar 

  • Muricho, D. N., Otieno, D. J., Oluoch-Kosura, W., & Jirström, M. (2019). Building pastoralists’ resilience to shocks for sustainable disaster risk mitigation: Lessons from West Pokot County, Kenya. International Journal of Disaster Risk Reduction, 34, 429–435.

    Article  Google Scholar 

  • Mustafa, D. (1998). Structural causes of vulnerability to flood hazard in Pakistan. Economic Geography, 74(3), 289–305.

    Google Scholar 

  • Nasiri, H., Mohd Yusof, M. J., & Mohammad Ali, T. A. (2016). An overview to flood vulnerability assessment methods. Sustainable Water Resources Management, 2, 331–336.

    Article  Google Scholar 

  • Nazeer, M., & Bork, H. R. (2019). Flood vulnerability assessment through different methodological approaches in the context of North-West Khyber Pakhtunkhwa, Pakistan. Sustainability, 11(23), 6695.

    Article  Google Scholar 

  • NDMA, (2012). Annual Report 2010, National Disaster Management Authority, Government of Pakistan.

  • NDMA, (2017). Annual Report 2017, National Disaster Management Authority, Government of Pakistan.

  • NDMA, (2020). Annual Report 2019, National Disaster Management Authority, Government of Pakistan.

  • NDMA, (2022). Annual Report 2010, National Disaster Management Authority, Government of Pakistan.

  • NDMA, (2023). Annual Report 2022, National Disaster Management Authority, Government of Pakistan.

  • Nguyen, N. B., Nguyen, N. H., Tran, D. T., Tran, P. T., Pham, T. G., & Nguyen, T. M. (2020). Assessing damages of agricultural land due to flooding in a lagoon region based on remote sensing and GIS: Case study of the Quang Dien district, Thua Thien Hue province, central Vietnam. Journal of Vietnamese Environment, 12(2), 100–107.

    Article  Google Scholar 

  • Niedźwiedź, T., Łupikasza, E., Pińskwar, I., Kundzewicz, Z. W., Stoffel, M., & Małarzewski, Ł. (2015). Variability of high rainfalls and related synoptic situations causing heavy floods at the northern foothills of the Tatra Mountains. Theoretical and Applied Climatology, 119, 273–284.

    Article  ADS  Google Scholar 

  • Opiyo, F., Wasonga, O., Nyangito, M., Schilling, J., & Munang, R. (2015). Drought adaptation and coping strategies among the Turkana pastoralists of northern Kenya. International Journal of Disaster Risk Science, 6(3), 295–309.

    Article  Google Scholar 

  • Pandey, C. L. (2019). Making communities disaster resilient: Challenges and prospects for community engagement in Nepal. Disaster Prevention and Management: An International Journal, 28(1), 106–118.

    Article  MathSciNet  Google Scholar 

  • Panthi, J., Aryal, S., Dahal, P., Bhandari, P., Krakauer, N. Y., & Pandey, V. P. (2016). Livelihood vulnerability approach to assessing climate change impacts on mixed agro-livestock smallholders around the Gandaki River Basin in Nepal. Regional Environmental Change, 16, 1121–1132.

    Article  Google Scholar 

  • Park, K., & Lee, M. H. (2019). The development and application of the urban flood risk assessment model for reflecting upon urban planning elements. Water, 11(5), 920.

    Article  Google Scholar 

  • Paudel, S., Kumar, P., Dasgupta, R., Johnson, B. A., Avtar, R., Shaw, R., Mishra, B. K., & Kanbara, S. (2021). Nexus between water security framework and public health: A comprehensive scientific review. Water, 13(10), 1365.

    Article  Google Scholar 

  • PBS, (2021). Economic Survey of Pakistan 2021, Ministry of Finance Islamabad, Government of Pakistan.

  • PDMA, (2020). Annual Report 2019, Provincial Disaster Management Authority, Government of Punjab, Pakistan.

  • PDMA, (2021). Annual Report 2020, Provincial Disaster Management Authority, Government of Punjab, Pakistan.

  • PMD, (2021). Annual Weather Report 2021, Pakistan Metrological Department, Government of Pakistan.

  • Prasad, A. S., Pandey, B. W., Leimgruber, W., & Kunwar, R. M. (2016). Mountain hazard susceptibility and livelihood security in the upper catchment area of the river Beas, Kullu Valley, Himachal Pradesh, India. Geoenvironmental Disasters, 3(1), 1–17.

    Article  Google Scholar 

  • Prelog, A. J., & Miller, L. M. (2013). Perceptions of disaster risk and vulnerability in rural Texas. Journal of Rural Social Sciences, 28(3), 1.

    Google Scholar 

  • BOS Punjab, (2020). Annual Statistics 2020, Bureau of Statistics Lahore Punjab, Government of Pakistan.

  • Qamer, F. M., Abbas, S., Ahmad, B., Hussain, A., Salman, A., Muhammad, S., Nawaz, M., Shrestha, S., Iqbal, B., & Thapa, S. (2023). A framework for multi-sensor satellite data to evaluate crop production losses: The case study of 2022 Pakistan floods. Scientific Reports, 13(1), 4240.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Qasim, S., Khan, A. N., Shrestha, R. P., & Qasim, M. (2015). Risk perception of the people in the flood prone Khyber Pukhthunkhwa province of Pakistan. International Journal of Disaster Risk Reduction, 14, 373–378.

    Article  Google Scholar 

  • Qie, J. Z., Zhang, Y., Trappmann, D., Zhong, Y. H., Ballesteros-Cánovas, J. A., Favillier, A., & Stoffel, M. (2022). Long-term reconstruction of flash floods in the Qilian Mountains, China, based on dendrogeomorphic methods. Journal of Mountain Science, 19(11), 3163–3177.

    Article  Google Scholar 

  • Rafiq, L., & Blaschke, T. (2012). Disaster risk and vulnerability in Pakistan at a district level. Geomatics, Natural Hazards and Risk, 3(4), 324–341.

    Article  Google Scholar 

  • Rahman, M., Ningsheng, C., Mahmud, G. I., Islam, M. M., Pourghasemi, H. R., Ahmad, H., Habumugisha, J. M., Washakh, R. M. A., Alam, M., Liu, E., & Han, Z. (2021). Flooding and its relationship with land cover change, population growth, and road density. Geoscience Frontiers, 12(6), 101224.

    Article  Google Scholar 

  • Rana, I. A., Asim, M., Aslam, A. B., & Jamshed, A. (2021). Disaster management cycle and its application for flood risk reduction in urban areas of Pakistan. Urban Climate, 38, 100893.

    Article  Google Scholar 

  • Rana, I. A., & Routray, J. K. (2016). Actual vis-à-vis perceived risk of flood prone urban communities in Pakistan. International Journal of Disaster Risk Reduction, 19, 366–378.

    Article  Google Scholar 

  • Rana, I. A., & Routray, J. K. (2018). Multidimensional model for vulnerability assessment of urban flooding: An empirical study in Pakistan. International Journal of Disaster Risk Science, 9, 359–375.

    Article  Google Scholar 

  • Rasul, G., Neupane, N., Hussain, A., & Pasakhala, B. (2021). Beyond hydropower: Towards an integrated solution for water, energy and food security in South Asia. International Journal of Water Resources Development, 37(3), 466–490.

    Article  Google Scholar 

  • Reed, C., Anderson, W., Kruczkiewicz, A., Nakamura, J., Gallo, D., Seager, R., & McDermid, S. S. (2022). The impact of flooding on food security across Africa. Proceedings of the National Academy of Sciences, 119(43), e2119399119.

    Article  CAS  Google Scholar 

  • Regasa, D. T., & Akirso, N. A. (2019). Determinants of climate change mitigation and adaptation strategies: An application of protection motivation theory. Rural Sustainability Research, 42(337), 9–25.

    Article  Google Scholar 

  • Ridha, T., Ross, A. D., & Mostafavi, A. (2022). Climate change impacts on infrastructure: Flood risk perceptions and evaluations of water systems in coastal urban areas. International Journal of Disaster Risk Reduction, 73, 102883.

    Article  Google Scholar 

  • Ruiz-Villanueva, V., Díez-Herrero, A., García, J. A., Ollero, A., Piégay, H., & Stoffel, M. (2018). Does the public’s negative perception towards wood in rivers relate to recent impact of flooding experiencing? Science of the Total Environment, 635, 294–307.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Salam, R., Towfiqul Islam, A. R. M., Shill, B. K., Monirul Alam, G. M., Hasanuzzaman, M., Morshadul Hasan, M., Ibrahim, S. M., & Shouse, R. C. (2021). Nexus between vulnerability and adaptive capacity of drought-prone rural households in northern Bangladesh. Natural Hazards, 106, 509–527.

    Article  Google Scholar 

  • Sam, A. S., Kumar, R., Kächele, H., & Müller, K. (2017). Vulnerabilities to flood hazards among rural households in India. Natural Hazards, 88, 1133–1153.

    Article  Google Scholar 

  • Saqib, S. E., Ahmad, M. M., Panezai, S., & Rana, I. A. (2016). An empirical assessment of farmers’ risk attitudes in flood-prone areas of Pakistan. International Journal of Disaster Risk Reduction, 18, 107–114.

    Article  Google Scholar 

  • Saqib, S. E., Arifullah, A., & Yaseen, M. (2021). Managing farm-centric risks in agricultural production at the flood-prone locations of Khyber Pakhtunkhwa, Pakistan. Natural Hazards, 107, 853–871.

    Article  Google Scholar 

  • Saqib, S. E., Kuwornu, J. K., Panezia, S., & Ali, U. (2018). Factors determining subsistence farmers’ access to agricultural credit in flood-prone areas of Pakistan. Kasetsart Journal of Social Sciences, 39(2), 262–268.

    Article  Google Scholar 

  • Saunders, W. S. A., & Becker, J. S. (2015). A discussion of resilience and sustainability: Land use planning recovery from the Canterbury earthquake sequence, New Zealand. International Journal of Disaster Risk Reduction, 14, 73–81.

    Article  Google Scholar 

  • Schilling, J., Hertig, E., Tramblay, Y., & Scheffran, J. (2020). Climate change vulnerability, water resources and social implications in North Africa. Regional Environmental Change, 20(1), 1–12.

    Article  Google Scholar 

  • Senko, H., Pole, L., Mešić, A., Šamec, D., Petek, M., Pohajda, I., Rajnović, I., Udiković-Kolić, N., Brkljačić, L., Palijan, G., & Petrić, I. (2022). Farmers observations on the impact of excessive rain and flooding on agricultural land in Croatia. Journal of Central European Agriculture, 23(1), 125–137.

    Article  Google Scholar 

  • Sepehri, M., Malekinezhad, H., Hosseini, S. Z., & Ildoromi, A. R. (2019). Assessment of flood hazard mapping in urban areas using entropy weighting method: A case study in Hamadan city, Iran. Acta Geophysica, 67, 1435–1449.

    Article  ADS  Google Scholar 

  • Shah, A. A., Ajiang, C., Khan, N. A., Alotaibi, B. A., & Tariq, M. A. U. R. (2022). Flood risk perception and its attributes among rural households under developing country conditions: The case of Pakistan. Water, 14(6), 992.

    Article  Google Scholar 

  • Shah, A. A., Gong, Z., Ali, M., Sun, R., Naqvi, S. A. A., & Arif, M. (2020). Looking through the Lens of schools: Children perception, knowledge, and preparedness of flood disaster risk management in Pakistan. International Journal of Disaster Risk Reduction, 50, 101907.

    Article  Google Scholar 

  • Shah, A. A., Shaw, R., Ye, J., Abid, M., Amir, S. M., Pervez, A. K., & Naz, S. (2019). Current capacities, preparedness and needs of local institutions in dealing with disaster risk reduction in Khyber Pakhtunkhwa, Pakistan. International Journal of Disaster Risk Reduction, 34, 165–172.

    Article  Google Scholar 

  • Shah, A. A., Wu, W., Gong, Z., Pal, I., & Khan, J. (2021). Multidimensional six-stage model for flood emergency response in schools: A case study of Pakistan. Natural Hazards, 105, 1977–2005.

    Article  Google Scholar 

  • Shah, A. A., Ye, J., Abid, M., Khan, J., & Amir, S. M. (2018). Flood hazards: Household vulnerability and resilience in disaster-prone districts of Khyber Pakhtunkhwa province, Pakistan. Natural Hazards, 93(1), 147–165.

    Article  Google Scholar 

  • Shah, A. A., Ye, J., Abid, M., & Ullah, R. (2017). Determinants of flood risk mitigation strategies at household level: A case of Khyber Pakhtunkhwa (KP) province, Pakistan. Natural Hazards, 88, 415–430.

    Article  Google Scholar 

  • Shaw, R. (2015). Hazard, vulnerability and risk: The Pakistan context. In A. N. Khan & R. Shaw (Eds.), Disaster risk reduction approaches in Pakistan (pp. 31–52). Springer.

    Google Scholar 

  • Sillmann, J., Christensen, I., Hochrainer-Stigler, S., Huang-Lachmann, J., Juhola, S., Kornhuber, K., Mahecha, M., Mechler, R., Reichstein, M., Ruane, A.C. & Schweizer, P.J. (2022). ISC-UNDRR-RISK KAN Briefing note on systemic risk.

  • Silva, L. B. L., Humberto, J. S., Alencar, M. H., Ferreira, R. J. P., & de Almeida, A. T. (2020). GIS-based multidimensional decision model for enhancing flood risk prioritization in urban areas. International J Ournal of Disaster Risk Reduction, 48, 101582.

    Article  Google Scholar 

  • Simpson, N. P., Mach, K. J., Constable, A., Hess, J., Hogarth, R., Howden, M., Lawrence, J., Lempert, R. J., Muccione, V., Mackey, B., & New, M. G. (2021). A framework for complex climate change risk assessment. One Earth, 4(4), 489–501.

    Article  ADS  Google Scholar 

  • Soulibouth, L., Hwang, H. S., & Shin, D. H. (2021). The impact of flood damage on farmers, agricultural sector and food security in laos: A regional case study of Champhone District, Savannaket Province. Journal of International Development Cooperation, 16(2), 151–170.

    Article  Google Scholar 

  • Steeb, N., Rickenmann, D., Badoux, A., Rickli, C., & Waldner, P. (2017). Large wood recruitment processes and transported volumes in Swiss mountain streams during the extreme flood of August 2005. Geomorphology, 279, 112–127.

    Article  ADS  Google Scholar 

  • Stoffel, M., Wyżga, B., Niedźwiedź, T., Ruiz-Villanueva, V., Ballesteros-Cánovas, J. A., & Kundzewicz, Z. W. (2016). Floods in mountain basins. In Z. W. Kundzewicz, M. Stoffel, T. Niedźwiedź, & B. Wyżga (Eds.), Flood risk in the upper Vistula basin (pp. 23–37). Springer.

    Chapter  Google Scholar 

  • Taguchi, R., Tanoue, M., Yamazaki, D., & Hirabayashi, Y. (2022). Global-scale assessment of economic losses caused by flood-related business interruption. Water, 14(6), 967.

    Article  Google Scholar 

  • Taib, Z. M., Jaharuddin, N. S., & Mansor, Z. D. (2016). A review of flood disaster and disaster management in Malaysia. International Journal of Accounting & Business Management. https://doi.org/10.24924/ijabm/2016.11/v4.iss2/98.106

    Article  Google Scholar 

  • Talbot, C. J., Bennett, E. M., Cassell, K., Hanes, D. M., Minor, E. C., Paerl, H., Raymond, P. A., Vargas, R., Vidon, P. G., Wollheim, W., & Xenopoulos, M. A. (2018). The impact of flooding on aquatic ecosystem services. Biogeochemistry, 141, 439–461.

    Article  PubMed  PubMed Central  Google Scholar 

  • Teo, M., Goonetilleke, A., Ahankoob, A., Deilami, K., & Lawie, M. (2018). Disaster awareness and information seeking behaviour among residents from low socio-economic backgrounds. International Journal of Disaster Risk Reduction, 31, 1121–1131.

    Article  Google Scholar 

  • Tong, S., & Ebi, K. (2019). Preventing and mitigating health risks of climate change. Environmental Research, 174, 9–13.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Tullos, D., Byron, E., Galloway, G., Obeysekera, J., Prakash, O., & Sun, Y. H. (2016). Review of challenges of and practices for sustainable management of mountain flood hazards. Natural Hazards, 83(3), 1763–1797.

    Google Scholar 

  • Ullah, A., Bano, A., & Khan, N. (2021a). Climate change and salinity effects on crops and chemical communication between plants and plant growth-promoting microorganisms under stress. Frontiers in Sustainable Food Systems, 5, 618092.

    Article  Google Scholar 

  • Ullah, F., Shah, S. A. A., Saqib, S. E., Yaseen, M., & Haider, M. S. (2021b). Households’ flood vulnerability and adaptation: Empirical evidence from mountainous regions of Pakistan. International Journal of Disaster Risk Reduction, 52, 101967.

    Article  Google Scholar 

  • Ullah, K., & Zhang, J. (2020). GIS-based flood hazard mapping using relative frequency ratio method: A case study of Panjkora River Basin, eastern Hindu Kush. Pakistan. Plos One, 15(3), e0229153.

    Article  CAS  PubMed  Google Scholar 

  • Ullah, R., Shivakoti, G. P., Kamran, A., & Zulfiqar, F. (2016). Farmers versus nature: Managing disaster risks at farm level. Natural Hazards, 82, 1931–1945.

    Article  Google Scholar 

  • UNDP (2023) Pakistan Floods 2022: Post Disaster Need Assessment Report, United Nations Development Programme. https://www.undp.org/pakistan/publications/pakistan-floods-2022-post-disaster-needs-assessment-pdna

  • UNICEF, (2023) Devastating Floods in Pakistan, 2022. Retrieved from July 1, 2023, https://www.unicef.org/emergencies/devastating-floods-pakistan-2022.

  • United Nations Office for Disaster Risk Reduction. (2022). Global assessment report on disaster risk reduction 2022: Our world at risk: Transforming governance for a resilient future.

  • Vallejo, B., & Wehn, U. (2016). Capacity development evaluation: The challenge of the results agenda and measuring return on investment in the global south. World Development, 79, 1–13.

    Article  Google Scholar 

  • Veenstra, J. (2013). Flood vulnerability assessment on a commune level in Vietnam. Bachelor thesis about the application of a flood vulnerability assessment to communes of the Ca river basin in Nghe An province in Vietnam (Bachelor's thesis, University of Twente).

  • Wachinger, G., Renn, O., Begg, C., & Kuhlicke, C. (2013). The risk perception paradox—Implications for governance and communication of natural hazards. Risk Analysis, 33(6), 1049–1065.

    Article  PubMed  Google Scholar 

  • Wang, Z., Chen, X., Qi, Z., & Cui, C. (2023). Flood sensitivity assessment of super cities. Scientific Reports, 13(1), 5582.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster, P. J., Toma, V. E., & Kim, H. M. (2011). Were the 2010 Pakistan floods predictable? Geophysical Research Letters. https://doi.org/10.1029/2010GL046346

    Article  Google Scholar 

  • Weis, S. W. M., Agostini, V. N., Roth, L. M., Gilmer, B., Schill, S. R., Knowles, J. E., & Blyther, R. (2016). Assessing vulnerability: An integrated approach for mapping adaptive capacity, sensitivity, and exposure. Climatic Change, 136(3–4), 615–629.

    Article  ADS  Google Scholar 

  • Wilkinson, E., Lovell, E., Carby, B., Barclay, J., & Robertson, R. E. (2016). The dilemmas of risk-sensitive development on a small volcanic island. Resources, 5(2), 21.

    Article  Google Scholar 

  • Wymann von Dach, S., Bachmann, F., Alcántara-Ayala, I., Fuchs, S., Keiler, M., Mishra, A., & Sötz, E. (2017). Safer lives and livelihoods in mountains: Making the Sendai Framework for Disaster Risk Reduction work for sustainable mountain development. Centre for Development and Environment (CDE), University of Bern, Bern Open Publishing (BOP).

    Google Scholar 

  • Yamane, T. (1967). Research methods: Determination of sample size. University of Florida.

    Google Scholar 

  • Yang, X., Guo, S., Deng, X., Wang, W., & Xu, D. (2021). Study on livelihood vulnerability and adaptation strategies of farmers in areas threatened by different disaster types under climate change. Agriculture, 11(11), 1088.

    Article  Google Scholar 

  • Yaseen, M., Saqib, S. E., Visetnoi, S., McCauley, J. F., & Iqbal, J. (2023). Flood risk and household losses: Empirical findings from a rural community in Khyber Pakhtunkhwa, Pakistan. International Journal of Disaster Risk Reduction, 96, 103930.

    Article  Google Scholar 

  • Yousafzai, M., & McCormick, P. (2014). I Am Malala: How one girl stood up for education and changed the world; Teen edition retold by Malala for her own generation. Hachette.

    Google Scholar 

  • Zheng, G., Allen, S. K., Bao, A., Ballesteros-Cánovas, J. A., Huss, M., Zhang, G., Li, J., Yuan, Y., Jiang, L., Yu, T., & Chen, W. (2021). Increasing risk of glacial lake outburst floods from future Third Pole deglaciation. Nature Climate Change, 11(5), 411–417.

    Article  ADS  Google Scholar 

  • Zuma, B. M., Luyt, C. D., Tandlich, R., & Chirenda, T. (2012). Flood disaster management in South Africa: Legislative framework and current challenges. IntechOpen.

    Google Scholar 

Download references

Funding

This study has no funding from any institution or any donor agency.

Author information

Authors and Affiliations

Authors

Contributions

DA analyzed data, methodology, results and discussion, conclusion and suggestions and manuscript write up whereas both DA and MA finalized and proof read the manuscript and both authors read and approved the final manuscript.

Corresponding author

Correspondence to Dilshad Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical approval taken from the COMSATS University Vehari campus, ethical approval committee.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 

Table 10 Exposure indicators assessment classes, weights and sources

10,

Table 11 Sensitivity indicators assessment classes, weights and sources

11,

Table 12 Adaptive capacity indicators assessment classes, weights and sources

12 and

Table 13 Hazards indicators assessment classes, weights and sources

13.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, D., Afzal, M. Climate change flood risks and post-flood agricultural and non-agricultural economic losses in flood-prone Bait households Muzaffargarh district of Punjab, Pakistan. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-04674-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-024-04674-7

Keywords

Navigation