Skip to main content
Log in

Hydrogels as water and nutrient reservoirs in agricultural soil: a comprehensive review of classification, performance, and economic advantages

  • Review
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

In recent years, the development of various hydrogel types has aimed to address concerns regarding the inefficient utilization of water and nutrients in agricultural settings. However, conflicting outcomes have emerged regarding the effectiveness of hydrogel application in agriculture and its potential negative environmental consequences. Therefore, this comprehensive review seeks to evaluate the functionality of hydrogels as water and nutrient reservoirs, while identifying potential solutions to mitigate their environmental impacts based on previous research. By synthesizing data from prior studies, this review analyzes how the performance of hydrogels may be influenced by soil pH, ionic strength, and other solution chemistry factors in the environment. Notably, this review encompasses a comprehensive assessment of the impact of the environmental matrix on hydrogel performance, which fills an important knowledge gap and provides valuable insights for future research directions and practical applications in agricultural lands. Considering sustainability concerns associated with conventional hydrogel applications, it is recommended to explore biodegradable hydrogels derived from natural materials like cellulose. These biodegradable options offer minimal negative impacts on the environment. Although studies on the economic analysis of hydrogel usage are limited, they play a significant role in identifying current obstacles and promoting the adoption of biodegradable hydrogels. Conventional hydrogels have shown greater commercial benefits, but the increasing focus on environmental concerns has driven the development of nature-based hydrogels (e.g., starch) in recent years. However, the trade-off between the relatively high cost of biodegradable hydrogels and their low environmental impacts necessitates more pilot-scale experiments and political efforts in this field. In summary, this review demonstrates that incorporating sustainable hydrogels into soils can effectively improve water and nutrient retention, ultimately enhancing crop production. These findings suggest a promising and sustainable future for hydrogel applications in agriculture, while emphasizing the need for further research, pilot studies, and concerted efforts to strike a balance between economic viability and environmental considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced from Noppakundilograt et al. (2015) with permission

Fig. 3

Similar content being viewed by others

References

  • Abdallah, A. M. (2019). The effect of hydrogel particle size on water retention properties and availability under water stress. International Soil and Water Conservation Research, 7(3), 275–285.

    Article  Google Scholar 

  • AbdAllah, A. M., Mashaheet, A. M., & Burkey, K. O. (2021). Super absorbent polymers mitigate drought stress in corn (Zea mays L.) grown under rainfed conditions. Agricultural Water Management, 254, 106946.

    Article  Google Scholar 

  • Abobatta, W. (2018). Impact of hydrogel polymer in agricultural sector. Advances in Agriculture and Environmental Science, 1(2), 59–64.

    Google Scholar 

  • Agaba, H., Orikiriza, L. J. B., Obua, J., Kabasa, J. D., Worbes, M., & Hüttermann, A. (2011). Hydrogel amendment to sandy soil reduces irrigation frequency and improves the biomass of Agrostis stolonifera. Agricultural Science, 02(04), 544–550.

    CAS  Google Scholar 

  • Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6(2), 105–121.

    Article  CAS  Google Scholar 

  • Ai, F., Yin, X., Hu, R., Ma, H., & Liu, W. (2021). Research into the super-absorbent polymers on agricultural water. Agricultural Water Management, 245, 106513.

    Article  Google Scholar 

  • Akalin, G. O., & Pulat, M. (2018). Preparation and characterization of nanoporous sodium carboxymethyl cellulose hydrogel beads. Journal of Nanomaterials, 2018, 1–12.

    Article  Google Scholar 

  • Akhtar, M. F., Hanif, M., & Ranjha, N. M. (2016). Methods of synthesis of hydrogels: A review. Saudi Pharmaceutical Journal, 24(5), 554–559.

    Article  Google Scholar 

  • Olad, A., Zebhi, H., Salari, D., Mirmohseni, A., & Tabar, A. R. (2018a). Slow-release NPK fertilizer encapsulated by carboxymethyl cellulose-based nanocomposite with the function of water retention in soil. Materials Science and Engineering, c: Materials for Biological Applications, 90, 333–340.

    Article  CAS  Google Scholar 

  • Alupei, I. C., Popa, M., Hamcerencu, M., & Abadie, M. J. M. (2002). Superabsorbant hydrogels based on xanthan and poly (vinyl alcohol): 1. The study of the swelling properties. European Polymer Journal, 38(11), 2313–2320.

    Article  CAS  Google Scholar 

  • Arafa, E. G., Sabaa, M. W., Mohamed, R. R., Kamel, E. M., Elzanaty, A. M., Mahmoud, A. M., & Abdel-Gawad, O. F. (2022). Eco-friendly and biodegradable sodium alginate/quaternized chitosan hydrogel for controlled release of urea and its antimicrobial activity. Carbohydrate Polymers, 291, 119555.

    Article  CAS  Google Scholar 

  • Bajpai, A. K., & Sharma, M. (2006). Preparation and characterization of novel pH-sensitive binary grafted polymeric blends of gelatin and poly(vinyl alcohol): Water sorption and blood compatibility study. Journal of Applied Polymer Science, 100(1), 599–617.

    Article  CAS  Google Scholar 

  • Bajpai, A. K., Shukla, S. K., Bhanu, S., & Kankane, S. (2008). Responsive polymers in controlled drug delivery. Progress in Polymer Science, 33(11), 1088–1118.

    Article  CAS  Google Scholar 

  • Balcerzak, J., & Mucha, M. (2010). Analysis of model drug release kinetics from complex matrices of polylactide-chitosan. Progress on Chemistry and Application of Chitin and Its Derivatives, 15, 117–126.

    Google Scholar 

  • Bauli, C. R., Lima, G. F., de Souza, A. G., Ferreira, R. R., & Rosa, D. S. (2021). Eco-friendly carboxymethyl cellulose hydrogels filled with nanocellulose or nanoclays for agriculture applications as soil conditioning and nutrient carrier and their impact on cucumber growing. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 623, 126771.

    Article  CAS  Google Scholar 

  • Bejenariu, A., Popa, M., Dulong, V., Picton, L., & Le Cerf, D. (2009). Trisodium trimetaphosphate crosslinked xanthan networks: Synthesis, swelling, loading and releasing behaviour. Polymer Bulletin, 62(4), 525–538.

    Article  CAS  Google Scholar 

  • Ben-Noah, I., & Friedman, S. P. (2016). Aeration of clayey soils by injecting air through subsurface drippers: Lysimetric and field experiments. Agricultural Water Management, 176, 222–233.

    Article  Google Scholar 

  • Bergmann, J., Verbruggen, E., Heinze, J., Xiang, D., Chen, B., Joshi, J., & Rillig, M. (2016). The interplay between soil structure, roots, and microbiota as a determinant of plant-soil feedback. Ecology and Evolution, 6, 7633–7644.

    Article  Google Scholar 

  • Bora, A., & Karak, N. (2022). Starch and itaconic acid-based superabsorbent hydrogels for agricultural application. European Polymer Journal, 176, 111430.

    Article  CAS  Google Scholar 

  • Bueno, V. B., Bentini, R., Catalani, L. H., & Petri, D. F. (2013). Synthesis and swelling behavior of xanthan-based hydrogels. Carbohydrate Polymers, 92(2), 1091–1099.

    Article  CAS  Google Scholar 

  • Cavalcante, A. G., Cavalcante, L. F., Cavalcante, A. C., Souto, A. G. D. L., dos Santos, C. E., Araújo, D. L., & INCTSal, F. (2018). Variation of thermal time, phyllochron and plastochron in passion fruit plants with irrigation depth and hydrogel. Journal of Agricultural Science, 10(5), 229.

    Article  Google Scholar 

  • Chalk, P. M., Craswell, E. T., Polidoro, J. C., & Chen, D. (2015). Fate and efficiency of 15N-labelled slow- and controlled-release fertilizers. Nutrient Cycling in Agroecosystems, 102(2), 167–178.

    Article  CAS  Google Scholar 

  • Chang, C. Y., & Zhang, L. N. (2011). Cellulose-based hydrogels: Present status and application prospects. Carbohydrate Polymers, 84(1), 40–53.

    Article  CAS  Google Scholar 

  • Chen, Y. C., & Chen, Y. H. (2019). Thermo and pH-responsive methylcellulose and hydroxypropyl methylcellulose hydrogels containing K2SO4 for water retention and a controlled-release water-soluble fertilizer. Science of the Total Environment, 655, 958–967.

    Article  CAS  Google Scholar 

  • Cheung, W. M., Marsh, R., Griffin, P. W., Newnes, L. B., Mileham, A. R., & Lanham, J. D. (2015). Towards cleaner production: A roadmap for predicting product end-of-life costs at early design concept. Journal of Cleaner Production, 87, 431–441.

    Article  Google Scholar 

  • Cruz, H., Luckman, P., Seviour, T., Verstraete, W., Laycock, B., & Pikaar, I. (2018). Rapid removal of ammonium from domestic wastewater using polymer hydrogels. Scientific Reports, 8, 1.

    Article  CAS  Google Scholar 

  • Das, S. K., & Ghosh, G. K. (2022). Hydrogel-biochar composite for agricultural applications and controlled release fertilizer: A step towards pollution free environment. Energy, 242, 122977.

    Article  CAS  Google Scholar 

  • Dehkordi, D. K. (2018). Evaluation of two types of superabsorbent polymer on soil water and some soil microbial properties. Paddy and Water Environment, 16(1), 143–152.

    Article  Google Scholar 

  • Demitri, C., Scalera, F., Madaghiele, M., Sannino, A., & Maffezzoli, A. (2013). Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. International Journal of Polymer Science, 2013, 1–6.

    Article  Google Scholar 

  • Di Lorenzo, F., & Seiffert, S. (2015). Nanostructural heterogeneity in polymer networks and gels. Polymer Chemistry, 6(31), 5515–5528.

    Article  Google Scholar 

  • Dorraji, S. S., Golchin, A., & Ahmadi, S. (2010). The effects of hydrophilic polymer and soil salinity on corn growth in sandy and loamy soils. Clean: Soil, Air, Water, 38(7), 584–591.

    CAS  Google Scholar 

  • Fennell, E., & Huyghe, J. M. (2021). A three-dimensional mechano-electrochemical material model of mechanosensing hydrogels. Materials and Design, 198, 109340.

    Article  CAS  Google Scholar 

  • Fennell, E., Kamphus, J., & Huyghe, J. M. (2020). The importance of the mixing energy in ionized superabsorbent polymer swelling models. Polymers, 12(3), 609.

    Article  CAS  Google Scholar 

  • Fertahi, S., Ilsouk, M., Zeroual, Y., Oukarroum, A., & Barakat, A. (2021). Recent trends in organic coating based on biopolymers and biomass for controlled and slow release fertilizers. Journal of Controlled Release, 330, 341–361.

    Article  CAS  Google Scholar 

  • Flory, P. J., & Rehner, J. (1943). Statistical mechanics of cross-linked polymer networks II Swelling. The Journal of Chemical Physics, 11, 521–526.

    Article  CAS  Google Scholar 

  • Frisch, H. L. (1980). Sorption and transport in glassy polymers—A review. Polymer Engineering and Science, 20(1), 2–13.

    Article  Google Scholar 

  • Fu, Y., & Kao, W. J. (2010). Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opinion on Drug Delivery, 7(4), 429–444.

    Article  CAS  Google Scholar 

  • Gallagher, K. M., & Corrigan, O. I. (2000). Mechanistic aspects of the release of levamisole hydrochloride from biodegradable polymers. Journal of Controlled Release, 69, 261–271.

    Article  CAS  Google Scholar 

  • Ganguly, S., Maity, T., Mondal, S., Das, P., & Das, N. C. (2017). Starch functionalized biodegradable semi-IPN as a pH-tunable controlled release platform for memantine. International Journal of Biological Macromolecules, 95, 185–198.

    Article  CAS  Google Scholar 

  • Ganji, F., Vasheghani-Farahani, S., & Vasheghani-Farahani, E. (2010). Theoretical description of hydrogel swelling: A review. Iranian Polymer Journal, 19(5), 375–398.

    CAS  Google Scholar 

  • Garduque, R. G., Gococo, B. J., Yu, C. A., Nalzaro, P. J., & Tumolva, T. (2020). Synthesis and characterization of sodium carboxymethyl cellulose/sodium alginate/hydroxypropyl cellulose hydrogel for agricultural water storage and controlled nutrient release (pp. 51–57). Trans Tech Publ.

  • Godbole, R. V., Khabaz, F., Khare, R., & Hedden, R. C. (2017). Swelling of random copolymer networks in pure and mixed solvents: Multi-component Flory–Rehner theory. The Journal of Physical Chemistry B, 121(33), 7963–7977.

    Article  CAS  Google Scholar 

  • Guilherme, M., Reis, A., Paulino, A., Moia, T., Mattoso, L., & Tambourgi, E. (2010). Pectin-based polymer hydrogel as a carrier for release of agricultural nutrients and removal of heavy metals from wastewater. Journal of Applied Polymer Science, 117(6), 3146–3154.

    Article  CAS  Google Scholar 

  • Guilherme, M. R., Aouada, F. A., Fajardo, A. R., Martins, A. F., Paulino, A. T., Davi, M. F. T., Rubira, A. F., & Muniz, E. C. (2015). Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. European Polymer Journal, 72, 365–385.

    Article  CAS  Google Scholar 

  • Gurevitch, J., Koricheva, J., Nakagawa, S., & Stewart, G. (2018). Meta-analysis and the science of research synthesis. Nature, 555, 175–182.

    Article  CAS  Google Scholar 

  • Hashmi, S. M., & Dufresne, E. R. (2009). Mechanical properties of individual microgel particles through the deswelling transition. Soft Matter, 5(19), 3682–3688.

    Article  CAS  Google Scholar 

  • Hennink, W. E., & van Nostrum, C. F. (2012). Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 64, 223–236.

    Article  Google Scholar 

  • Hertle, Y., Zeiser, M., Hasenohrl, C., Busch, P., & Hellweg, T. (2010). Responsive P(NIPAM-co-NtBAM) microgels: Flory–Rehner description of the swelling behaviour. Colloid and Polymer Science, 288(10–11), 1047–1059.

    Article  CAS  Google Scholar 

  • Higuchi, T. 1963. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. Journal of Pharmaceutical Sciences 52(12), 1145–1149.@@@

  • Hiroshi, F., Kazuhiko, N., & Terutake, H. (1952). Mechanical properties of concentrated hydrogels of agar-agar. I. Modulus of elasticity in compression. Bulletin of the Chemical Society of Japan, 25, 374–378.

    Article  Google Scholar 

  • Hosseini, S. H., Niyungeko, C., Khan, S., & Liang, X. (2021). Effects of superabsorbent polyacrylamide hydrogel and gypsum applications on colloidal phosphorus release from agricultural soils. Journal of Soils and Sediments, 21(2), 925–935.

    Article  CAS  Google Scholar 

  • Hou, X., Li, R., He, W., Dai, X., Ma, K., & Liang, Y. (2018). Superabsorbent polymers influence soil physical properties and increase potato tuber yield in a dry-farming region. Journal of Soils and Sediments, 18(3), 816–826.

    Article  CAS  Google Scholar 

  • Hüttermann, A., Orikiriza, L. J. B., & Agaba, H. (2009). Application of superabsorbent polymers for improving the ecological chemistry of degraded or polluted lands. Clean: Soil, Air, Water, 37(7), 517–526.

    Google Scholar 

  • Irwansyah, I., Li, Y., Shi, W., Qi, D., Leow, W., Tang, M., Li, S., & Chen, X. (2014). Gram-positive antimicrobial activity of amino acid-based hydrogels. Advanced Materials, 27(4), 648–654.

    Article  Google Scholar 

  • Islam, M. R., Hu, Y., Fei, C., Qian, X., Eneji, A. E., & Xue, X. (2011a). Application of superabsorbent polymer: A new approach for wheat (Triticum aestivum L.) production in drought-affected areas of northern China. Journal of Food, Agriculture and Environment, 9(1), 304–309.

    CAS  Google Scholar 

  • Islam, M. R., Xue, X., Mao, S., Ren, C., Eneji, A. E., & Hu, Y. (2011b). Effects of water-saving superabsorbent polymer on antioxidant enzyme activities and lipid peroxidation in oat (Avena sativa L.) under drought stress. Journal of the Science of Food and Agriculture, 91(4), 680–686.

    Article  CAS  Google Scholar 

  • Jabbari, E., & Nozari, S. (2000). Swelling behavior of acrylic acid hydrogels prepared by γ-radiation crosslinking of polyacrylic acid in aqueous solution. European Polymer Journal, 36(12), 2685–2692.

    Article  CAS  Google Scholar 

  • Jamnongkan, T., & Kaewpirom, S. (2010). Potassium release kinetics and water retention of controlled-release fertilizers based on chitosan hydrogels. Journal of Polymers and the Environment, 18(3), 413–421.

    Article  CAS  Google Scholar 

  • Jat, A. L., Rathore, B. S., Desai, A. G., & Shah, S. K. (2018). Production potential, water productivity and economic feasibility of Indian mustard (Brassica juncea) under deficit and adequate irrigation scheduling with hydrogel. Indian Journal of Agricultural Science, 88(2), 212–215.

    Article  CAS  Google Scholar 

  • Jeffery, S., Verheijen, F. G. A., Van der Velde, M., & Bastos, A. C. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture Ecosystems and Environment, 144(1), 175–187.

    Article  Google Scholar 

  • Ji, Z., Pei, T., Chen, Y., Wu, H., Hou, Q., Shi, F., Xie, B., & Zhang, J. (2022). The driving factors of grassland water use efficiency along degradation gradients on the Qinghai-Tibet Plateau, China. Global Ecology and Conservation, 35, e02090.

    Article  Google Scholar 

  • Juarez-Maldonado, A., Ortega-Ortiz, H., Perez-Labrada, F., Cadenas-Pliego, G., & Benavides-Mendoza, A. (2016). Cu Nanoparticles absorbed on chitosan hydrogels positively alter morphological, production, and quality characteristics of tomato. Journal of Applied Botany and Food Quality, 89, 183–189.

    CAS  Google Scholar 

  • Jungsinyatam, P., Suwanakood, P., & Saengsuwan, S. (2022). Multicomponent biodegradable hydrogels based on natural biopolymers as environmentally coating membrane for slow-release fertilizers: Effect of crosslinker type. Science of the Total Environment, 843, 157050.

    Article  CAS  Google Scholar 

  • Kabir, E., Kaur, R., Lee, J., Kim, K.-H., & Kwon, E. E. (2020). Prospects of biopolymer technology as an alternative option for non-degradable plastics and sustainable management of plastic wastes. Journal of Cleaner Production, 258, 120536.

    Article  CAS  Google Scholar 

  • Kabiri, K., & Zohuriaan-Mehr, M. J. (2003). Superabsorbent hydrogel composites. Polymers for Advanced Technologies, 14(6), 438–444.

    Article  CAS  Google Scholar 

  • Kenawy, E.-R., Seggiani, M., Hosny, A., Rashad, M., Cinelli, P., Saad-Allah, K. M., El-Sharnouby, M., Shendy, S., & Azaam, M. M. (2021). Superabsorbent composites based on rice husk for agricultural applications: Swelling behavior, biodegradability in soil and drought alleviation. Journal of Saudi Chemical Society, 25(6), 101254.

    Article  CAS  Google Scholar 

  • Kim, S., Iyer, G., Nadarajah, A., Frantz, J. M., & Spongberg, A. L. (2010). Polyacrylamide hydrogel properties for horticultural applications. International Journal of Polymer Analysis and Characterization, 15(5), 307–318.

    Article  CAS  Google Scholar 

  • Kim, Y. G., Lee, C. H., & Bae, Y. C. (2014). Hydrophilic-hydrophobic copolymer nano-sized particle gels: Swelling behavior and dependence on crosslinker chain length. Fluid Phase Equilibria, 361, 200–207.

    Article  CAS  Google Scholar 

  • Kong, W., Li, Q., Li, X., Su, Y., Yue, Q., & Gao, B. (2019). A biodegradable biomass-based polymeric composite for slow release and water retention. Journal of Environmental Management, 230, 190–198.

    Article  CAS  Google Scholar 

  • Kopeček, J. (2007). Hydrogel biomaterials: A smart future? Biomaterials, 28(34), 5185–5192.

    Article  Google Scholar 

  • Kopecek, J., & Yang, J. (2007). Hydrogels as smart biomaterials. Polymer International, 56(9), 1078–1098.

    Article  CAS  Google Scholar 

  • Kotkin, J. (2010). The next hundred million : America in 2050. Penguin Press.

    Google Scholar 

  • Kumar, S., Tiwari, A., Chaudhari, C. V., & Bhardwaj, Y. K. (2023). Chitosan based radiation crosslinked and grafted matrix: An environment friendly adsorbent for dye uptake. Radiation Physics and Chemistry, 208, 110876.

    Article  CAS  Google Scholar 

  • Lazzari, S., Pfister, D., Diederich, V., Kern, A., & Storti, G. (2014). Modeling of acrylamide/N, N′-methylenebisacrylamide solution copolymerization. Industrial and Engineering Chemistry Research, 53(22), 9035–9048.

    Article  CAS  Google Scholar 

  • Li, A., Wang, A., & Chen, J. (2004). Studies on poly(acrylic acid)/attapulgite superabsorbent composites. II. Swelling behaviors of superabsorbent composites in saline solutions and hydrophilic solvent-water mixtures. Journal of Applied Polymer Science, 94(5), 1869–1876.

    Article  CAS  Google Scholar 

  • Li, S., & Chen, G. (2018a). Factors affecting the effectiveness of bioelectrochemical system applications: Data synthesis and meta-analysis. Batteries, 4(3), 34.

    Article  CAS  Google Scholar 

  • Li, S., & Chen, G. (2018b). Using hydrogel-biochar composites for enhanced cadmium removal from aqueous media. Material Science and Engineering International Journal, 2(6), 294–298.

    Article  Google Scholar 

  • Li, S., & Chen, G. (2019). Contemporary strategies for enhancing nitrogen retention and mitigating nitrous oxide emission in agricultural soils: Present and future. Environment, Development and Sustainability, 1–39.

  • Li, S., & Chen, G. (2020a). Agricultural waste-derived superabsorbent hydrogels: Preparation, performance, and socioeconomic impacts. Journal of Cleaner Production, 251, 119669.

    Article  CAS  Google Scholar 

  • Li, S., & Chen, G. (2020b). Contemporary strategies for enhancing nitrogen retention and mitigating nitrous oxide emission in agricultural soils: Present and future. Environment, Development and Sustainability, 22(4), 2703–2741.

    Article  Google Scholar 

  • Li, S., Harris, S., Anandhi, A., & Chen, G. (2019). Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. Journal of Cleaner Production, 215, 890–902.

    Article  CAS  Google Scholar 

  • Li, X., He, J.-Z., Liu, Y.-R., & Zheng, Y.-M. (2013). Effects of super absorbent polymers on soil microbial properties and Chinese cabbage (Brassica chinensis) growth. Journal of Soils and Sediments, 13(4), 711–719.

    Article  CAS  Google Scholar 

  • Li, X., Li, Q., Xu, X., Su, Y., Yue, Q., & Gao, B. (2016). Characterization, swelling and slow-release properties of a new controlled release fertilizer based on wheat straw cellulose hydrogel. Journal of the Taiwan Institute of Chemical Engineers, 60, 564–572.

    Article  CAS  Google Scholar 

  • Li, Y., Li, J., Gao, L., & Tian, Y. (2018). Irrigation has more influence than fertilization on leaching water quality and the environmental risk in excessively fertilized vegetable soils. PLoS ONE, 13(9), e0204570.

    Article  Google Scholar 

  • Li, Z., He, G., Hua, J., Wu, M., Guo, W., Gong, J., Zhang, J., & Qiao, C. (2017). Preparation of γ-PGA hydrogels and swelling behaviors in salt solutions with different ionic valence numbers. Rsc Advances, 7(18), 11085–11093.

    Article  CAS  Google Scholar 

  • Lin, X., Guo, L., Shaghaleh, H., Hamoud, Y. A., Xu, X., & Liu, H. (2021). A TEMPO-oxidized cellulose nanofibers/MOFs hydrogel with temperature and pH responsiveness for fertilizers slow-release. International Journal of Biological Macromolecules, 191, 483–491.

    Article  CAS  Google Scholar 

  • Liu, J., Hull, V., Godfray, H., Tilman, D., Gleick, P., Hoff, H., Pahl-Wostl, C., Xu, Z., Chung, M., Sun, J., & Li, S. (2018a). Nexus approaches to global sustainable development. Nature Sustainability, 1, 466–476.

    Article  Google Scholar 

  • Liu, J., Hull, V., Godfray, H. C. J., Tilman, D., Gleick, P., Hoff, H., Pahl-Wostl, C., Xu, Z., Chung, M. G., Sun, J., & Li, S. (2018b). Nexus approaches to global sustainable development. Nature Sustainability, 1(9), 466–476.

    Article  Google Scholar 

  • Liu, J., Li, Q., Su, Y., Yue, Q., & Gao, B. (2014). Characterization and swelling-deswelling properties of wheat straw cellulose based semi-IPNs hydrogel. Carbohydrate Polymers, 107, 232–240.

    Article  CAS  Google Scholar 

  • Liu, M., Liang, R., Zhan, F., Liu, Z., & Niu, A. (2006). Synthesis of a slow-release and superabsorbent nitrogen fertilizer and its properties. Polymers for Advanced Technologies, 17(6), 430–438.

    Article  CAS  Google Scholar 

  • Lu, S., Feng, C., Gao, C., Wang, X., Xu, X., Bai, X., Gao, N., & Liu, M. (2016). Multifunctional environmental smart fertilizer based on l-aspartic acid for sustained nutrient release. Journal of Agricultural and Food Chemistry, 64(24), 4965–4974.

    Article  CAS  Google Scholar 

  • Luckachan, G. E., & Pillai, C. (2011). Biodegradable polymers: A review on recent trends and emerging perspectives. Journal of Polymers and the Environment, 19(3), 637–676.

    Article  CAS  Google Scholar 

  • Machado, A., Kloas, W., Zarfl, C., Hempel, S., & Rillig, M. (2018). Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biology, 24, 1405–1416.

    Article  Google Scholar 

  • Marandi, G. B., Mahdavinia, G. R., & Ghafary, S. (2011). Collagen-g-poly(sodium acrylate-co-acrylamide)/sodium montmorillonite superabsorbent nanocomposites: Synthesis and swelling behavior. Journal of Polymer Research, 18(6), 1487–1499.

    Article  Google Scholar 

  • Mishra, S., Thombare, N., Ali, M., & Swami, S. (2018). Polymer gels, pp. 185–228.

  • Moal, M. L., Gascuel-Odoux, C., Menesguen, A., Souchon, Y., Etrillard, C., Levain, A., Moatar, F., Pannard, A., Souchu, P., Lefebvre, A., & Pinay, G. (2019). Eutrophication: A new wine in an old bottle? Science of the Total Environment, 651, 1–11.

    Article  Google Scholar 

  • Montesano, F. F., Parente, A., Santamaria, P., Sannino, A., & Serio, F. (2015). Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth. Agriculture and Agricultural Science Procedia, 4, 451–458.

    Article  Google Scholar 

  • Murthy, P. S. K., Mohan, Y. M., Sreeramulu, J., & Raju, K. M. (2006). Semi-IPNs of starch and poly(acrylamide-co-sodium methacrylate): Preparation, swelling and diffusion characteristics evaluation. Reactive and Functional Polymers, 66(12), 1482–1493.

    Article  CAS  Google Scholar 

  • Narjary, B., Aggarwal, P., Kumar, S., & Meena, M. (2013). Significance of hydrogel and its application in agriculture. In ICAR.

  • Nascimento, C. D. V., Simmons, R. W., & Feitosa, J.P.d.A., Dias, C.T.d.S. and Costa, M.C.G. (2021). Potential of superabsorbent hydrogels to improve agriculture under abiotic stresses. Journal of Arid Environments, 189, 104496.

    Article  Google Scholar 

  • Ni, B., Liu, M., Lü, S., Xie, L., & Wang, Y. (2011). Environmentally friendly slow-release nitrogen fertilizer. Journal of Agricultural and Food Chemistry, 59(18), 10169–10175.

    Article  CAS  Google Scholar 

  • Ni, N., & Dumont, M. J. (2016). Protein-based hydrogels derived from industrial byproducts containing collagen, Keratin. Zein and Soy. Waste Biomass Valorization, 8(2), 285–300.

    Article  Google Scholar 

  • Nnadi, F., & Brave, C. (2011). Environmentally friendly superabsorbent polymers for water conservation in agricultural lands. Journal of Soil Science and Environmental Management, 2(7), 206–211.

    Google Scholar 

  • Noppakundilograt, S., Pheatcharat, N., & Kiatkamjornwong, S. (2015). Multilayer-coated NPK compound fertilizer hydrogel with controlled nutrient release and water absorbency. Journal of Applied Polymer Science, 132, 2.

    Article  Google Scholar 

  • Nyyssölä, A., & Ahlgren, J. (2019). Microbial degradation of polyacrylamide and the deamination product polyacrylate. International Biodeterioration & Biodegradation, 139, 24–33.

    Article  Google Scholar 

  • Olad, A., Zebhi, H., Salari, D., Mirmohseni, A., & Tabar, A. R. (2018b). Water retention and slow release studies of a salep-based hydrogel nanocomposite reinforced with montmorillonite clay. New Journal of Chemistry, 42(4), 2758–2766.

    Article  CAS  Google Scholar 

  • Pakdel, P., & Peighambardoust, S. (2018). A review on acrylic based hydrogels and their applications in wastewater treatment. Journal of Environmental Management, 217, 123–143.

    Article  Google Scholar 

  • Pang, S., Chin, S., Tay, S., & Tchong, F. (2011). Starch–maleate–polyvinyl alcohol hydrogels with controllable swelling behaviors. Carbohydrate Polymers, 84(1), 424–429.

    Article  CAS  Google Scholar 

  • Puoci, F., Iemma, F., Spizzirri, U. G., Cirillo, G., Curcio, M., & Picci, N. (2008). Polymer in agriculture: A review. American Journal of Agricultural and Biological Sciences, 3, 299–314.

    Article  Google Scholar 

  • Qi, H., Ma, R., Shi, C., Huang, Z., Liu, S., Sun, L., & Hu, T. (2019). Novel low-cost carboxymethyl cellulose microspheres with excellent fertilizer absorbency and release behavior for saline-alkali soil. International Journal of Biological Macromolecules, 131, 412–419.

    Article  CAS  Google Scholar 

  • Qi, X., Wu, L., Su, T., Zhang, J., & Dong, W. (2018). Polysaccharide-based cationic hydrogels for dye adsorption. Colloids and Surfaces B: Biointerfaces, 170, 364–372.

    Article  CAS  Google Scholar 

  • Qiu, X., & Hu, S. (2013). “Smart” materials based on cellulose: A review of the preparations, properties, and applications. Materials (basel), 6(3), 738–781.

    Article  Google Scholar 

  • Quesada-Perez, M., Maroto-Centeno, J. A., Forcada, J., & Hidalgo-Alvarez, R. (2011). Gel swelling theories: The classical formalism and recent approaches. Soft Matter, 7(22), 10536–10547.

    Article  CAS  Google Scholar 

  • Raafat, A. I., Eid, M., & El-Arnaouty, M. B. (2012). Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 283, 71–76.

    Article  CAS  Google Scholar 

  • Raju, K. M., & Raju, M. P. (2001a). Synthesis and swelling properties of superabsorbent copolymers. Advances in Polymer Technology, 20(2), 146–154.

    Article  CAS  Google Scholar 

  • Raju, K. M., Raju, M. P., & Mohan, Y. M. (2002). Synthesis and water absorbency of crosslinked superabsorbent polymers. Journal of Applied Polymer Science, 85(8), 1795–1801.

    Article  CAS  Google Scholar 

  • Raju, M. P., & Raju, K. M. (2001b). Design and synthesis of superabsorbent polymers. Journal of Applied Polymer Science, 80(14), 2635–2639.

    Article  CAS  Google Scholar 

  • Ramli, R. A. (2019). Slow release fertilizer hydrogels: A review. Polymer Chemistry, 10(45), 6073–6090.

    Article  CAS  Google Scholar 

  • Ravishankar, K., & Dhamodharan, R. (2020). Advances in chitosan-based hydrogels: Evolution from covalently crosslinked systems to ionotropically crosslinked superabsorbents. Reactive and Functional Polymers, 149, 104517.

    Article  CAS  Google Scholar 

  • Riad, G. S., Youssef, S. M., El-Azm, N. A. I. A., & Ahmed, E. M. (2017). Amending sandy soil with biochar or/and superabsorbent polymer mitigates the adverse effects of drought stress on green pea. Egyptian Journal of Horticulture, 45, 169–183.

    Google Scholar 

  • Rizwan, M., Rubina Gilani, S., Iqbal Durani, A., & Naseem, S. (2021). Materials diversity of hydrogel: Synthesis, polymerization process and soil conditioning properties in agricultural field. Journal of Advanced Research, 33, 15–40.

    Article  CAS  Google Scholar 

  • Rop, K., Mbui, D., Njomo, N., Karuku, G. N., Michira, I., & Ajayi, R. F. (2019). Biodegradable water hyacinth cellulose-graft-poly(ammonium acrylate-co-acrylic acid) polymer hydrogel for potential agricultural application. Heliyon, 5(3), e01416.

    Article  Google Scholar 

  • Saalwächter, K., Chassé, W., & Sommer, J. U. (2013). Structure and swelling of polymer networks: Insights from NMR. Soft Matter, 9(29), 6587–6593.

    Article  Google Scholar 

  • Sabadini, R. C., Fernandes, M., de Zea Bermudez, V., Pawlicka, A., & Silva, M. M. (2022). Eco-friendly superabsorbent hydrogels based on starch, gellan gum, citric acid, and nanoclays for soil humidity control. Journal of Applied Polymer Science, 139(41), e52998.

    Article  CAS  Google Scholar 

  • Saeidipour, F., Mansourpour, Z., Mortazavian, E., Rafiee-Tehrani, N., & Rafiee-Tehrani, M. (2017). New comprehensive mathematical model for HPMC-MCC based matrices to design oral controlled release systems. European Journal of Pharmaceutics and Biopharmaceutics, 121, 61–72.

    Article  CAS  Google Scholar 

  • Saha, A., Sekharan, S., & Manna, U. (2020). Superabsorbent hydrogel (SAH) as a soil amendment for drought management: A review. Soil and Tillage Research, 204, 104736.

    Article  Google Scholar 

  • Salim, N., & Raza, A. (2020). Nutrient use efficiency (NUE) for sustainable wheat production: A review. Journal of Plant Nutrition, 43(2), 297–315.

    Article  CAS  Google Scholar 

  • Sarkar, D. J., Bera, T., Singh, A. (2019). Release of urea from cellulosic hydrogel coated urea granule: Modeling effect of crosslink density and pH triggering. Polymer-Plastics Technology and Materials, 1–13.

  • Sarkar, D. J., Singh, A., Mandal, P., Kumar, A., & Parmar, B. S. (2014). Synthesis and characterization of poly (CMC-g-cl-PAam/Zeolite) superabsorbent composites for controlled delivery of zinc micronutrient: Swelling and release behavior. Polymer-Plastics Technology and Engineering, 54(4), 357–367.

    Article  Google Scholar 

  • Sarkar, K., & Sen, K. (2018). Polyvinyl alcohol based hydrogels for urea release and Fe(III) uptake from soil medium. Journal of Environmental Chemical Engineering, 6(1), 736–744.

    Article  CAS  Google Scholar 

  • Saruchi, K. V., Mittal, H., & Alhassan, S. M. (2019). Biodegradable hydrogels of tragacanth gum polysaccharide to improve water retention capacity of soil and environment-friendly controlled release of agrochemicals. International Journal of Biological Macromolecules, 132, 1252–1261.

    Article  CAS  Google Scholar 

  • Schott, H. (1992). Swelling kinetics of polymers. Journal of Macromolecular Science, Part B, B31(1), 1–9.

    Article  Google Scholar 

  • Siegel, R. A., & Rathbone, M. J. (2012). Fundamentals and applications of controlled release drug delivery (pp. 19–43). Boston: Springer.

    Book  Google Scholar 

  • Siepmann, J., & Peppas, N. A. (2012). Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Advanced Drug Delivery Reviews, 64, 163–174.

    Article  Google Scholar 

  • Singh, A., Sarkar, D. J., Mittal, S., Dhaka, R., Maiti, P., Singh, A., Raghav, T., Solanki, D., Ahmed, N., & Singh, S. B. (2019). Zeolite reinforced carboxymethyl cellulose-Na+-g-cl-poly(AAm) hydrogel composites with pH responsive phosphate release behavior. Journal of Applied Polymer Science, 136(15), 47332.

    Article  Google Scholar 

  • Singh, A., Sarkar, D. J., Singh, A. K., Parsad, R., Kumar, A., & Parmar, B. S. (2011). Studies on novel nanosuperabsorbent composites: Swelling behavior in different environments and effect on water absorption and retention properties of sandy loam soil and soil-less medium. Journal of Applied Polymer Science, 120(3), 1448–1458.

    Article  CAS  Google Scholar 

  • Singh, B., Chauhan, G. S., Sharma, D. K., Kant, A., Gupta, I., & Chauhan, N. (2006). The release dynamics of model drugs from the psyllium and N-hydroxymethylacrylamide based hydrogels. International Journal of Pharmaceutics, 325, 15–25.

    Article  CAS  Google Scholar 

  • Singh, S., Shukla, A., Chaudhary, S., Bhushan, C., Negi, M., & Mahapatra, B. (2018). Influence of irrigation scheduling and hydrogel application on growth and yield of Indian mustard (Brassica juncea). Indian Journal of Agronomy, 63(2), 246–249.

    Google Scholar 

  • Singh, T., & Singhal, R. (2018) Water quality management. In Singh, V., Yadav, S., & Yadava, R. (Eds.), (pp. 257–267). Springer.

  • Suresh, R., Prasher, S. O., Patel, R. M., Qi, Z., Elsayed, E., Schwinghamer, T., & Ehsan, A. M. (2018). Super absorbent polymer and irrigation regime effects on growth and water use efficiency of container-grown cherry tomatoes. Transactions of the ASABE, 61(2), 523–531.

    Article  CAS  Google Scholar 

  • Talaat, H. A., Sorour, M. H., Aboulnour, A. G., Shaalan, H. F., Ahmed, E. M., Awad, A. M., & Ahmed, M. A. (2008). Development of a multi-component fertilizing hydrogel with relevant techno-economic indicators. American-Eurasian Journal of Agricultural and Environmental Sciences, 3(5), 764–770.

    Google Scholar 

  • Tanan, W., Panichpakdee, J., & Saengsuwan, S. (2019). Novel biodegradable hydrogel based on natural polymers: Synthesis, characterization, swelling/reswelling and biodegradability. European Polymer Journal, 112, 678–687.

    Article  CAS  Google Scholar 

  • Tanan, W., Panichpakdee, J., Suwanakood, P., & Saengsuwan, S. (2021). Biodegradable hydrogels of cassava starch-g-polyacrylic acid/natural rubber/polyvinyl alcohol as environmentally friendly and highly efficient coating material for slow-release urea fertilizers. Journal of Industrial and Engineering Chemistry, 101, 237–252.

    Article  CAS  Google Scholar 

  • Thakur, S., Govender, P., Mamo, M., Tamulevicius, S., & Thakur, V. (2017). Recent progress in gelatin hydrogel nanocomposites for water purification and beyond. Vacuum, 146, 396–408.

    Article  CAS  Google Scholar 

  • Thombare, N., Mishra, S., Siddiqui, M. Z., Jha, U., Singh, D., & Mahajan, G. R. (2018). Design and development of guar gum based novel, superabsorbent and moisture retaining hydrogels for agricultural applications. Carbohydrate Polymers, 185, 169–178.

    Article  CAS  Google Scholar 

  • Tian, H., Tang, Z., Zhuang, X., Chen, X., & Jing, X. (2012). Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Progress in Polymer Science, 37(2), 237–280.

    Article  CAS  Google Scholar 

  • Tuncaboylu, D. C., Sari, M., Oppermann, W., & Okay, O. (2011). Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules, 44(12), 4997–5005.

    Article  CAS  Google Scholar 

  • Ullah, F., Othman, M., Bisyrul, H., Javed, F., Ahmad, Z., & Akil, H. M. (2015). Classification, processing and application of hydrogels: A review. Materials Science and Engineering: C, 57, 414–433.

    Article  CAS  Google Scholar 

  • Urbano-Juan, M. M., Socías-Viciana, M. M., & Ureña-Amate, M. D. (2019). Evaluation of nitrate controlled release systems based on (acrylamide-co-itaconic acid) hydrogels. Reactive and Functional Polymers, 141, 82–90.

    Article  CAS  Google Scholar 

  • Wang, X., Hou, H., Li, Y., Wang, Y., Hao, C., & Ge, C. (2016). A novel semi-IPN hydrogel: Preparation, swelling properties and adsorption studies of Co (II). Journal of Industrial and Engineering Chemistry, 41, 82–90.

    Article  Google Scholar 

  • Wang, Y., Liu, M., Ni, B., & Xie, L. (2012). κ-Carrageenan–sodium alginate beads and superabsorbent coated nitrogen fertilizer with slow-release, water-retention, and anticompaction properties. Industrial & Engineering Chemistry Research, 51(3), 1413–1422.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhu, Y., Zhang, S., & Wang, Y. (2018). What could promote farmers to replace chemical fertilizers with organic fertilizers? Journal of Cleaner Production, 199, 882–890.

    Article  Google Scholar 

  • Watcharamul, S., Lerddamrongchai, S., Siripongpreda, T., Rodtassana, C., Nuisin, R., & Kiatkamjornwong, S. (2022). Effects of carboxymethyl cellulose/nano-calcium carbonate hydrogel amendment of loamy sand soil for maize growth. ACS Agricultural Science and Technology, 2(5), 1071–1080.

    Article  CAS  Google Scholar 

  • Wu, Y., Brickler, C., Li, S., & Chen, G. (2021a). Synthesis of microwave-mediated biochar-hydrogel composites for enhanced water absorbency and nitrogen release. Polymer Testing, 93, 106996.

    Article  CAS  Google Scholar 

  • Wu, Y., Li, S., & Chen, G. (2020). Impact of humic acids on phosphorus retention and transport. Journal of Soil Science and Plant Nutrition, 20(4), 2431–2439.

    Article  CAS  Google Scholar 

  • Wu, Y., Li, S., & Chen, G. (2021b). Impacts of mechanical and chemical factors on the water-holding capacity of polyacrylamide in sand: Models and mechanisms. Soil Research, 59(5), 501–510.

    Article  CAS  Google Scholar 

  • Xiao, X. M., Yu, L., Xie, F. W., Bao, X. Y., Liu, H. S., Ji, Z. L., & Chen, L. (2017). One-step method to prepare starch-based superabsorbent polymer for slow release of fertilizer. Chemical Engineering Journal, 309, 607–616.

    Article  CAS  Google Scholar 

  • Xiong, B., Loss, R. D., Shields, D., Pawlik, T., Hochreiter, R., Zydney, A. L., & Kumar, M. (2018). Polyacrylamide degradation and its implications in environmental systems. NPJ Clean Water, 1(1), 17.

    Article  CAS  Google Scholar 

  • Yang, J., Yan, Q., Liu, H., & Hu, Y. (2006). A molecular thermodynamic model for binary lattice polymer solutions. Polymer, 47(14), 5187–5195.

    Article  CAS  Google Scholar 

  • Yazdani, F., Allahdadi, I., & Akbari, G. A. (2007). Impact of superabsorbent polymer on yield and growth analysis of soybean (Glycine max L.) under drought stress condition. Pakistan Journal of Biological Sciences, 10, 4190–4196.

    Article  Google Scholar 

  • Yi, X., He, J., Guo, Y., Han, Z., Yang, M., Jin, J., Gu, J., Ou, M., & Xu, X. (2018). Encapsulating Fe3O4 into calcium alginate coated chitosan hydrochloride hydrogel beads for removal of Cu (II) and U (VI) from aqueous solutions. Ecotoxicology and Environmental Safety, 147, 699–707.

    Article  CAS  Google Scholar 

  • Yiamsawas, D., Kangwansupamonkon, W., Chailapakul, O., & Kiatkamjornwong, S. (2007). Synthesis and swelling properties of poly[acrylamide-co-(crotonic acid)] superabsorbents. Reactive and Functional Polymers, 67(10), 865–882.

    Article  CAS  Google Scholar 

  • Yu, F., Fu, R., Xie, Y., & Chen, W. (2015). Isolation and characterization of polyacrylamide-degrading bacteria from dewatered sludge. International Journal of Environmental Research and Public Health, 12(4), 4214–4230.

    Article  Google Scholar 

  • Yuan, H., Li, S., Liu, J., Song, C., & Chen, G. (2017). Cry1Ab adsorption and transport in humic acid-coated geological formation of alumino-silica clays. Water, Air, and Soil Pollution, 228, 387.

    Article  Google Scholar 

  • Zhang, J., Li, A., & Wang, A. (2006). Study on superabsorbent composite. VI. Preparation, characterization and swelling behaviors of starch phosphate-graft-acrylamide/attapulgite superabsorbent composite. Carbohydrate Polymers, 65(2), 150–158.

    Article  CAS  Google Scholar 

  • Zhao, C., Zhang, L., Zhang, Q., Wang, J., Wang, S., Zhang, M., & Liu, Z. (2022). The effects of bio-based superabsorbent polymers on the water/nutrient retention characteristics and agricultural productivity of a saline soil from the Yellow River Basin, China. Agricultural Water Management, 261, 107388.

    Article  Google Scholar 

  • Zhao, C., Zhang, M., Liu, Z., Guo, Y., & Zhang, Q. (2019). Salt-tolerant superabsorbent polymer with high capacity of water-nutrient retention derived from sulfamic acid-modified starch. ACS Omega, 4(3), 5923–5930.

    Article  CAS  Google Scholar 

  • Zhong, K., Lin, Z. T., Zheng, X. L., Jiang, G. B., Fang, Y. S., Mao, X. Y., & Liao, Z. W. (2013). Starch derivative-based superabsorbent with integration of water-retaining and controlled-release fertilizers. Carbohydrate Polymers, 92(2), 1367–1376.

    Article  CAS  Google Scholar 

  • Zhu, W., Zhang, Y., Wang, P., Yang, Z., Yasin, A., & Zhang, L. (2019). Preparation and applications of salt-resistant superabsorbent poly (acrylic acid-acrylamide/fly ash) composite. Materials (basel), 12(4), 569.

    Article  Google Scholar 

  • Zohourian, M. M., & Kabiri, K. (2008). Superabsorbent polymer materials: a review. Iranian Polymer Journal, 17(6), 451–477.

    Google Scholar 

Download references

Funding

This work was funded by the National Institute of Food and Agriculture (NIFA) of United States Department of Agriculture (USDA) through Grant No. 2016-67020-25275 and No. 2018-68002-27920 to Florida Agricultural and Mechanical University. This work was also funded by A.I. Innovations, N.V. through Cal Poly Pomona Foundation, Project No. 000875.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simeng Li.

Ethics declarations

Conflict of interest

This work was funded by the National Institute of Food and Agriculture (NIFA) of United States Department of Agriculture (USDA) through Grant No. 2016-67020-25275 and No. 2018-68002-27920 to Florida Agricultural and Mechanical University. This work was also funded by A.I. Innovations, N.V. through Cal Poly Pomona Foundation, Project No. 000875.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Li, S. & Chen, G. Hydrogels as water and nutrient reservoirs in agricultural soil: a comprehensive review of classification, performance, and economic advantages. Environ Dev Sustain (2023). https://doi.org/10.1007/s10668-023-03706-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-023-03706-y

Keywords

Navigation