Skip to main content
Log in

Trisodium trimetaphosphate crosslinked xanthan networks: synthesis, swelling, loading and releasing behaviour

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Xanthan (Xan) is a biocompatible and biodegradable polysaccharide with a promising potential as substrate for controlled drug delivery applications. Xan based hydrogels were synthesized in alkaline medium using trisodium trimetaphosphate (STMP) as crosslinking agent. Hydrogels with various crosslinking agent/polymer ratios were synthesized and subsequently characterized by the means of elemental analysis and dynamic swelling degree, model compound loading and releasing behaviour. Two physical parameters (crosslinking density and phosphate charge) are manifesting antagonistic actions by stiffening or disrupting the three-dimensional macromolecular ensemble. The highest swelling degree was obtained using an intermediate STMP:Xan ratio in which case the opposing effects of the two forces are well balanced. The synthesized networks are pH sensitive. In acid and alkaline media the swelling degrees are lower by comparison to neutral pH. The entrapping and releasing behaviour of the newly synthesized xanthan networks were studied using methylene blue as a cationic model molecule. The releasing kinetics present a first-order model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Le Cerf D, Irinei F, Muller G (1990) Solution properties of gum exudates from Sterculia urens (karaya gum). Carbohydr Polym 13(4):375

    Article  CAS  Google Scholar 

  2. Simon S, Picton L, Le Cerf D, Muller G (2005) Adsorption of amphiphilic polysaccharides onto polystyrene latex particles. Polymer 46(11):3700

    Article  CAS  Google Scholar 

  3. Henni-Silhadi W, Deyme M, Boissonnade MM, Appel M, Le Cerf D, Picton L, Rosilio V (2007) Enhancement of the solubility and efficacy of poorly water-soluble drugs by hydrophobically-modified polysaccharide derivatives. Pharm Res 24(12):2317

    Article  CAS  Google Scholar 

  4. Papagianni M, Psomas SK, Batsilas L (2001) Xanthan production by Xanthomonas campestris in batch cultures. Process Biochem 37:73

    Article  CAS  Google Scholar 

  5. Martínez-Ruvalcaba A, Chornet E, Rodrigue D (2007) Viscoelastic properties of dispersed chitosan/xanthan hydrogels. Carbohydr Polym 67:586

    Article  Google Scholar 

  6. Jansson PE, Kenne L, Lindberg B (1975) Structure of extracellular polysaccharide from Xanthomonas campestris. Carbohydr Res 45:275

    Article  CAS  Google Scholar 

  7. Melton LD, Mindt L, Rees DA (1976) Covalent structure of the extracellular polysaccharide from Xanthomonas campestris: evidence from partial hydrolysis studies. Carbohydr Res 46:245

    Article  CAS  Google Scholar 

  8. Moorhouse R, Walkinshaw MD, Arnott S (1977) Xanthan gum—molecular conformation and interactions. In: Sandford PA, Lasking A (eds) Extracelular microbial polysaccharides: a symposium. ACS Symposium series, Washington, p 90

    Google Scholar 

  9. Ogawa K, Yui T (1998) X-ray diffraction study of polysaccharides. In: Dumitriu S (ed) Polysaccharides: structural, diversity and functional versatility. Marcel Dekker, New York, p 101

    Google Scholar 

  10. Stokke BT, Elgsaeter A, Skjrak-Brjek G, Smidsrød O (1987) The molecular size and shape of xanthan, sylinan, bronchial mucin, alginate, and amylose as revealed by electron microscopy. Carbohydr Res 160:13

    Article  CAS  Google Scholar 

  11. Capron I, Brigand G, Muller G (1997) About the native and renatured conformation of xanthan exopolysaccharide. Polymer 38:5289

    Article  CAS  Google Scholar 

  12. Stokke BT, Christensen B, Smidsrod O (1998) Macromolecular properties of xanthan. In: Dumitriu S (ed) Polysaccharides. Structural diversity and functional versatility. Marcel Dekker, New York, p 433

    Google Scholar 

  13. Alupei IC, Popa M, Hamcerencu M, Abadie MJM (2002) Superabsorbant hydrogels based on xanthan and poly(vinyl alcohol) 1. The study of the swelling properties. Eur Polym J 38:2313

    Article  CAS  Google Scholar 

  14. Mocanu G, Merle L, Carpov A, Muller G (2000) Immobilisation de biomolécules dans des microparticules de carboxyméthylcelluloses “hydrophobiquement modifiées”. Eur Polym J 36:2381

    Article  CAS  Google Scholar 

  15. Giri AK (1997) Genetic toxicology of epichlorohydrin: a review. Mutat Res Rev Mutat Res 386:25

    CAS  Google Scholar 

  16. Woo K, Seib PA (1997) Cross-linking of wheat starch and hydroxypropylated wheat starch in alkaline slurry with sodium trimetaphosphate. Carbohydr Polym 33:263

    Article  CAS  Google Scholar 

  17. Kasemsuwan T, Bailey T, Jane J (1998) Preparation of clear noodles with mixtures of tapioca and high-amylose starches. Carbohydr Polym 32:301

    Article  Google Scholar 

  18. Muhammad K, Hussin F, Ghazali YC, Kennedy JF (2000) Effect of pH on phosphorylation of sago starch. Carbohydr Polym 42:85

    Article  CAS  Google Scholar 

  19. Gliko-Kabir I, Yagen B, Penhasi A, Rubinstein A (2000) Phosphated crosslinked guar for colon-specific drug delivery: I. Preparation and physicochemical character. J Control Release 63:121

    Article  CAS  Google Scholar 

  20. Dulong V, Lack S, Le Cerf D, Picton L, Vannier JP, Muller G (2004) Hyaluronan-based hydrogels particles prepared by crosslinking with trisodium trimetaphosphate. Synthesis and characterization. Carbohydr Polym 57:1

    Article  CAS  Google Scholar 

  21. Lack S, Dulong V, Le Cerf D, Picton L, Argillier JF, Muller G (2004) Hydrogels based on pullulan crosslinked with sodium trimetaphosphate (STMP): rheological study. Polym Bull 52:429

    Article  CAS  Google Scholar 

  22. Mocanu G, Mihai D, Picton L, Le Cerf D, Muller G (2002) Associative pullulan gels and their interaction with biological active substances. J Control Release 83(1):41

    Article  CAS  Google Scholar 

  23. Lack S, Dulong V, Picton L, Le Cerf D, Condamine E (2007) High-resolution nuclear magnetic resonance spectroscopy studies of polysaccharides crosslinked by sodium trimetaphosphate: a proposal for the reaction mechanism. Carbohydr Res 342:943

    Article  CAS  Google Scholar 

  24. Sang Y, Prakash O, Seib PA (2007) Characterization of phosphorylated cross-linked resistant starch by 31P nuclear magnetic resonance (31P NMR) spectroscopy. Carbohydr Polym 67(2):201

    Article  CAS  Google Scholar 

  25. Bejenariu A, Popa M, Le Cerf D, Picton L (2003) Stiffness xanthan hydrogels: synthesis, swelling characteristics and controlled release properties. Polym Bull 61:631

    Article  Google Scholar 

  26. Hamcerencu M, Desbrieres J, Popa M, Khoukh A, Riess G (2007) New unsaturated derivatives of xanthan gum: synthesis and characterization. Polymer 48:1921

    Article  CAS  Google Scholar 

  27. Arifin DY, Lee LY, Wang CH (2006) Mathematical modeling and simulation of drug release from microspheres: Implications to drug delivery systems. Adv Drug Deliv Rev 58(12–13):1274

    Article  CAS  Google Scholar 

  28. Hadjiioannou TP, Koupparis CGD, Macheras MA, Panayotis E (1993) In: Quantitative calculations in pharmaceutical practice and research. VCH Weinhimi, New York, p 461

  29. Bourne DWA (2002) Pharmacokinetics. Drugs and the pharmaceutical sciences. In: Banker GS, Rhodes CT (eds) Modern pharmaceutics, vol 121, 4th edn. Marcel Dekker, New York, p 67

  30. Higuchi T (1963) Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci 52(12):1145

    Article  CAS  Google Scholar 

  31. Hixson AW, Crowell JH (1931) Dependence of reaction velocity upon surface and agitation. I. Theoretical consideration. J Ind Eng Chem 3:923

    Article  Google Scholar 

  32. Talukdar MM, Kinget R (1995) Swelling and drug release behaviour of xanthan gum matrix tablets. Int J Pharm 120:63

    Article  CAS  Google Scholar 

  33. Brannon-Peppas L, Peppas NA (1990) Equilibrium swelling behaviour of pH-sensitive hydrogels. Chem Eng Sci 46:715

    Article  Google Scholar 

  34. Brannon-Peppas L, Peppas NA (1991) Time-dependent response of ionic polymer networks to pH and ionic strength changes. Int J Pharm 70:53

    Article  CAS  Google Scholar 

  35. Bettini R, Colombo P, Peppas NA (1995) Solubility effects on drug transport through pH-sensitive, swelling-controlled release systems: transport of theophylline and metoclopramide monohydrochloride. J Control Release 37(1–2):105

    Article  CAS  Google Scholar 

  36. Mocanu G, Mihaï D, Le Cerf D, Picton L, Muller G (2003) Synthesis of new associative gel microspheres from carboxymethyl pullulan and their interactions with lysozyme. Eur Polym J 40(2):283

    Article  Google Scholar 

  37. Dulong V, Le Cerf D, Picton L, Muller G (2006) Carboxymethylpullulan hydrogels with a ionic and/or amphiphilic behavior: swelling properties and entrapment of cationic and/or hydrophobic molecules. Colloids Surf A 274:163

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the Région Haute Normandie (MILC grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Le Cerf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bejenariu, A., Popa, M., Dulong, V. et al. Trisodium trimetaphosphate crosslinked xanthan networks: synthesis, swelling, loading and releasing behaviour. Polym. Bull. 62, 525–538 (2009). https://doi.org/10.1007/s00289-008-0033-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-008-0033-8

Keywords

Navigation