Skip to main content

Advertisement

Log in

Climate change and its impacts on banana production: a systematic analysis

  • Review
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Climate change and environmental stress limit the growth of plants, including bananas. A systematic review and analysis of the topic are presented for the first time to identify physiological, biochemical, and molecular factors that may confer tolerance to climate change in Musa spp. Searches were conducted in six databases using pre-established inclusion and exclusion criteria (Web of Science, PubMed Central, SAGE, Google Scholar, Wiley, and Scopus Journals). A previously established process and inclusion and exclusion criteria were used to avoid publication bias. This systematic review was specifically focused on the Musa spp. production to climate change, the number of studies included was limited to only 76 articles. This indicates the need for additional research in this area and a potential change in research trends toward other strategies for mitigating the effects of climate change in bananas. Based on the review outcomes, we found a connection between changes in several climatic factors, which impacted banana production, and the cultivation of bananas in various geographic locations. Recently, few comprehensive studies on the effects of water stress on bananas have been conducted, however, they have yet to address the impacts of flood stress. Research gaps were identified addressing the characteristics of banana production and how this varies with location, elevation, and management factors, as well as the effects of changes in drought, water stress, and temperature. Evidence-based innovations are needed to reduce the effects of climate change in banana production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the results of this study are available from the corresponding author, upon reasonable request.

References

  • Abdoussalami, A., Checkina, M. L., & Hossain, M. N. (2022). An Assessment of the factors that influence the development of fusarium wilt epidemics in banana. Asian Journal of Plant and Soil Sciences.

  • Abdoussalami, A., Xiaoling, L. I., & Xiang, L. (2021). Effects of flooding and submergence on photosynthetic and respiratory metabolic adaptation strategies of riparian plants in the three gorges dam : an overview. Journal of Global Agriculture and Ecology, 11(3), 11–23.

    Google Scholar 

  • Abdullah, A. S. M., Dalal, K., Halim, A., Rahman, A. F., & Biswas, A. (2019). Effects of climate change and maternal morality: Perspective from case studies in the rural area of bangladesh. International Journal of Environmental Research and Public Health, 16(23), 4594. https://doi.org/10.3390/ijerph16234594

  • Ali, A. B. M., Elshaikh, N. A., Shuang-En, Y., Basheer, A. K., Alnail, M., Alhadi, M., & Altayeb, O. A. (2015). Correlation between water deficiency, yield components and crop productivity of banana. Journal of Environmental and Agricultural Sciences, 4, 11–20.

    CAS  Google Scholar 

  • Altieri, M. A., Nicholls, C. I., Henao, A., & Lana, M. A. (2015). Agroecology and the design of climate change-resilient farming systems. Agronomy for Sustainable Development, 35(3), 869–890. https://doi.org/10.1007/s13593-015-0285-2

  • Aritua, V., Parkinson, N., Thwaites, R., Heeney, J. V., Jones, D. R., Tushemereirwe, W., Crozier, J., Reeder, R., Stead, D. E., & Smith, J. (2008). Characterization of the Xanthomonas sp. causing wilt of enset and banana and its proposed reclassification as a strain of X. vasicola. Plant Pathology. https://doi.org/10.1111/j.1365-3059.2007.01687.x

    Article  Google Scholar 

  • Bebber, D. P. (2019). Climate change effects on black Sigatoka disease of banana. Philosophical Transactions of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rstb.2018.0269

    Article  Google Scholar 

  • Blomme, G., Ocimati, W., Amato, S., Felde, A. Z., Kamira, M., Bumba, M., & Ntamwira, J. (2020). Banana pest risk assessment along banana trade axes running from low to high altitude sites, in the Eastern DR Congo and in Burundi. African Journal of Agricultural Research. https://doi.org/10.5897/ajar2020.15023

    Article  Google Scholar 

  • Bouzigues, R., Ribolzi, O., Favrot, J. C., & Valles, V. (1997). Carbonate redistribution and hydrogeochemical processes in two calcareous soils with groundwater in a Mediterranean environment. European Journal of Soil Science. https://doi.org/10.1111/j.1365-2389.1997.tb00541.x

    Article  Google Scholar 

  • Brouwer, C., & Heibloem, M. (1986). Irrigation water management: Irrigation water needs part i principles of irrigation water needs part ii determination of irrigation water needs a manual prepared jointly. Fao.

  • Bubici, G., Kaushal, M., Prigigallo, M. I., Cabanás, C. G. L., & Mercado-Blanco, J. (2019). Biological control agents against Fusarium wilt of banana. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2019.00616

    Article  Google Scholar 

  • Calberto, G., Blake, D., Staver, C., Carvajal, C., & Brown, D. (2018). The frequency and effects of weather events on banana productivity – results of a global survey. Acta Horticulturae. https://doi.org/10.17660/actahortic.2018.1196.22

  • Castelan, F. P., Castro-Alves, V. C., Saraiva, L. A., Nascimento, T. P., Cálhau, M. F. N. S., Dias, C. T. S., & Cordenunsi-Lysenko, B. R. (2018). Natural ecosystem surrounding a conventional banana crop improves plant health and fruit quality. Frontiers in Plant Science, 9(June), 1–11. https://doi.org/10.3389/fpls.2018.00759

    Article  Google Scholar 

  • Chandru, B., Rohini, A., Chandrakumar, M., & Anandhi, V. (2021). An economic analysis on production of hill banana in Dindigul district of Tamil nadu, India. Asian journal of Agricultural Extension, Economics & Sociology. https://doi.org/10.9734/ajaees/2021/v39i1130747

  • Chidawanyika, F., Mudavanhu, P., & Nyamukondiwa, C. (2019). Global climate change as a driver of bottom-up and top-down factors in agricultural landscapes and the fate of host-parasitoid interactions. Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2019.00080

    Article  Google Scholar 

  • Ciancio, A., Rosso, L. C., Lopez-Cepero, J., & Colagiero, M. (2022). Rhizosphere 16S-ITS metabarcoding profiles in banana crops are affected by nematodes, cultivation, and local climatic variations. Frontiers in Microbiology, 13, 1–18. https://doi.org/10.3389/fmicb.2022.855110

    Article  Google Scholar 

  • Coelho, E. F., de Oliveira, R. C., & Pamponet, A. J. M. (2013). Water requirements of terra-type banana under coastal tableland conditions. Pesquisa Agropecuária Brasileira, 48, 1260–1268. https://doi.org/10.1590/s0100-204x2013000900010

    Article  Google Scholar 

  • D’Albuquerque, J., Gomes, E. R., de Sousa, V. F., & de Sousa, A. P. (2013). Water requirement and levels of irrigation of banana FHIA-18 in the semiarid region of Piauí state. IRRIGA, 18, 756–767.

    Google Scholar 

  • Dale, J., James, A., Paul, J. Y., Khanna, H., Smith, M., Peraza-Echeverria, S., Garcia-Bastidas, F., Kema, G., Waterhouse, P., Mengersen, K., & Harding, R. (2017). Transgenic cavendish bananas with resistance to Fusarium wilt tropical race 4. Nature Communications. https://doi.org/10.1038/s41467-017-01670-6

    Article  Google Scholar 

  • Daryanto, S., Wang, L., & Jacinthe, P. A. (2015). Global synthesis of drought effects on food legume production. PloS one, 10(6), e0127401. https://doi.org/10.1371/journal.pone.012740

  • Dhull, S. B., Malik, T., Kaur, R., Kumar, P., Kaushal, N., & Singh, A. (2021). Banana starch: properties illustration and food applications—a review. Starch/staerke. https://doi.org/10.1002/star.202000085

    Article  Google Scholar 

  • Dobránszki, J., Hidvégi, N., Gulyás, A., Tóth, B., & Teixeira da Silva, J. A. (2020). Abiotic stress elements in in vitro potato (Solanum tuberosum L.) exposed to air-based and liquid-based ultrasound: A comparative transcriptomic assessment. Progress in Biophysics and Molecular Biology. https://doi.org/10.1016/j.pbiomolbio.2020.09.001

    Article  Google Scholar 

  • Donkersley, P., Silva, F. W. S., Carvalho, C. M., Al-Sadi, A. M., & Elliot, S. L. (2018). Biological, environmental and socioeconomic threats to citrus lime production. Journal of Plant Diseases and Protection. https://doi.org/10.1007/s41348-018-0160-x

    Article  Google Scholar 

  • Elayabalan, S., Subramaniam, S., & Selvarajan, R. (2015). Banana bunchy top disease (BBTD) symptom expression in banana and strategies for transgenic resistance: A review. Emirates Journal of Food and Agriculture. https://doi.org/10.9755/ejfa.v27i1.19197

    Article  Google Scholar 

  • Escalant, J.V., Sharrock, S., Frison, E., Carreel, F., Jenny, C., Swennen, R., & Tomekpe, K. (2002). The genetic improvement of Musa using conventional breeding, and modern tools of molecular and cellular biology. IPGRI, Rome, Italy.

  • Escobedo-GraciaMedrano, R. M., Enríquez-Valencia, A. J., Youssef, M., López-Gómez, P., Cruz-Cárdenas, C. I., & Ku-Cauich, J. R. (2016). Somatic embryogenesis in banana Musa ssp. Somatic Embryogenesis: Fundamental Aspects and Applications. https://doi.org/10.1007/978-3-319-33705-0_21

    Article  Google Scholar 

  • Falcomer, A. L., Riquette, R. F. R., De Lima, B. R., Ginani, V. C., & Zandonadi, R. P. (2019). Health benefits of green banana consumption: A systematic review. Nutrients. https://doi.org/10.3390/nu11061222

    Article  Google Scholar 

  • Fandika, I. R., Kadyampakeni, D., Mwenebanda, B. M. L., & Magombo, T. M. (2014). Banana irrigation management and optimization: A comparative study of researcher-managed and farmer-managed irrigated banana production in Shire Valley, Malawi. African Journal of Agricultural Research, 9, 2687–2693. https://doi.org/10.5897/ajar09.302

    Article  Google Scholar 

  • Fernández, M. D., Baeza, E., Céspedes, A., Pérez-Parra, J., & Gázquez, J. C. (2009). Validation of on-farm crop water requirements (PrHo) model for horticultural crops in an unheated plastic greenhouse. In International Symposium on Strategies Towards Sustainability of Protected Cultivation in Mild Winter Climate 807 (pp. 295–300). https://doi.org/10.17660/ActaHortic.2009.807.40

  • Freitas, W. D. S., Ramos, M. M., & Costa, S. L. D. (2008). Demanda de irrigação da cultura da banana na bacia do Rio São Francisco Revista Brasileira de Engenharia Agrícola e Ambiental, 12(4) 343–349. https://doi.org/10.1590/S1415-43662008000400002

  • Gao, J., Dou, T., He, W., Sheng, O., Bi, F., Deng, G., Gao, H., Dong, T., Li, C., Zhang, S., Yi, G., Hu, C., & Yang, Q. (2021). MaMAPK3-MaICE1-MaPOD P7 pathway, a positive regulator of cold tolerance in banana. BMC Plant Biology, 21(1), 1–18. https://doi.org/10.1186/s12870-021-02868-z

    Article  CAS  Google Scholar 

  • Gebre, G. G., Rik, E., & Kijne, A. (2020). Analysis of banana value chain in Ethiopia: Approaches to sustainable value chain development. Cogent Food and Agriculture. https://doi.org/10.1080/23311932.2020.1742516

    Article  Google Scholar 

  • Gemechu, F., Lemessa, K., Melka, T., Gadisa, B., Dekeba, S., & Zewdu, A. (2016). Effect of climate change on agricultural production and community response in Daro Lebu & Mieso district, West Hararghe zone, Oromia region national state, ethiopia. Journal of Natural Sciences Research, 6(24).

  • Giraud, T., Gladieux, P., & Gavrilets, S. (2010). Linking the emergence of fungal plant diseases with ecological speciation. Trends in Ecology and Evolution. https://doi.org/10.1016/j.tree.2010.03.006

    Article  Google Scholar 

  • Goenaga, R., & Irizarry, H. (2000). Yield and quality of banana irrigated with fractions of class a pan evaporation on an oxisol. Agronomy Journal, 92, 1008–1012. https://doi.org/10.2134/agronj2000.9251008x

    Article  Google Scholar 

  • Gong, Y., Staudhammer, C. L., Wiesner, S., Starr, G., & Zhang, Y. (2021). Characterizing growing season length of subtropical coniferous forests with a phenological model. Forests, 12(1), 95. https://doi.org/10.3390/f12010095

  • Guimarães, G. G. F., Cantú, R. R., Scherer, R. F., Beltrame, A. B., & Haro, M. M. D. (2020). Banana crop nutrition: Insights into different nutrient sources and soil fertilizer application strategies. Revista Brasileira de Ciencia do Solo. https://doi.org/10.36783/18069657rbcs20190104

  • Guy, B., Walter, O., Alexandra, Z. F., David, A., & Deo, K. (2020a). A literature review on yield gaps of various root, tuber and banana crops as a background for assessing banana yield reductions due to pests and diseases at a field site in western Burundi. African Journal of Agricultural Research. https://doi.org/10.5897/ajar2020.14982

    Article  Google Scholar 

  • Haque, M. A., Rafii, M. Y., Yusoff, M. M., Ali, N. S., Yusuff, O., Datta, D. R., Anisuzzaman, M., & Ikbal, M. F. (2021). Advanced breeding strategies and future perspectives of salinity tolerance in rice. Agronomy. https://doi.org/10.3390/agronomy11081631

    Article  Google Scholar 

  • Holder, G. D., & Gumbs, F. A. (1982). Effects of water supply during floral initiation and differentiation on female flower production by robusta bananas. Experimental agriculture. https://doi.org/10.1017/s0014479700013661

  • Hossain, M. S., Qian, L., Arshad, M., Shahid, S., Fahad, S., & Akhter, J. (2019). Climate change and crop farming in Bangladesh: an analysis of economic impacts. International Journal of Climate Change Strategies and Management. https://doi.org/10.1108/IJCCSM-04-2018-0030

    Article  Google Scholar 

  • Hu, C. H., Wei, Y. R., Huang, Y. H., & Yi, G. J. (2013). An efficient protocol for the production of chit42 transgenic Furenzhi banana (Musa spp. AA group) resistant to Fusarium oxysporum. Vitro Cellular and Developmental Biology-Plant. https://doi.org/10.1007/s11627-013-9525-9

    Article  Google Scholar 

  • Iglesias-Fernández, R., & Matilla, A. J. (2016). Flooding stress and O2-shortage in plants: An overview. Water Stress and Crop Plants A Sustainable Approach. https://doi.org/10.1002/9781119054450.ch41

    Article  Google Scholar 

  • Ji, T., Li, X., Meng, G., Gu, Y., Zhang, Q., Liu, L., Wu, H., Yao, Z., Zhang, S., Wang, Y., Zhang, T., Wang, X., Cao, X., Li, H., Liu, Y., Wang, X., Wang, X., Sun, S., Zhou, M., & Niu, K. (2020). The association between banana consumption and the depressive symptoms in Chinese general adult population: A cross-sectional study. Journal of Affective Disorders. https://doi.org/10.1016/j.jad.2019.12.008

    Article  Google Scholar 

  • Karienye, D. K., Nduru, G. M., & Kamiri, H. W. (2021). Climate variability and adaptation among small holder banana farmers in mountain regions of Kenya. Geography, Environment, Sustainability, 14(1), 161–170. https://doi.org/10.24057/2071-9388-2019-27

  • Kavino, M., Harish, S., Saravanakumar, D., Jeyakumar, P., Kumar, N., & Samiyappan, R. (2010). Biological hardening-a new approach to enhance resistance against biotic and abiotic stresses in micropropagated plants. Tree and Forestry Science and Biotechnology, 4, 11–21.

  • Kazemi, H., Klug, H., & Kamkar, B. (2018). New services and roles of biodiversity in modern agroecosystems: A review. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2018.06.018

    Article  Google Scholar 

  • Kuang, R., & Wei, Y. (2020). Breeding report of ultra-dwarf banana cultivar ‘zhongjiao no.12’. Journal of Fruit Science. https://doi.org/10.13925/j.cnki.gsxb.20200240.

  • Lau, C., Jarvis, A., & Ramírez, J. (2010). Colombian agriculture: Adapting to climate change. Ciat Policy Brief, 1.

  • Ledley, T. S., Sundquist, E. T., Schwartz, S. E., Hall, D. K., Fellows, J. D., & Killeen, T. L. (1999). Climate change and greenhouse gases. Eos. https://doi.org/10.1029/99EO00325

    Article  Google Scholar 

  • Lekasi, J. K., Bekunda, M. A., Woomer, P. L., & Tenywa, J. S. (1999). Decomposition of crop residues in banana-based cropping systems of uganda. Biological Agriculture and Horticulture. https://doi.org/10.1080/01448765.1999.9754819

  • Li, B., Liu, G., Wang, Y., Wei, Y., & Shi, H. (2019). Overexpression of banana ATG8f modulates drought stress resistance in Arabidopsis. Biomolecules, 9(12), 1–13. https://doi.org/10.3390/biom9120814

    Article  CAS  Google Scholar 

  • Long, P. G. (1979). Banana black leaf streak disease (mycosphaerella fijiensis) in Western Samoa. Transactions of the British Mycological Society, 72(2), 299–310. https://doi.org/10.1016/s0007-1536(79)80046-7

  • Mahouachi, J., Arbona, V., & Gómez-Cadenas, A. (2007). Hormonal changes in papaya seedlings subjected to progressive water stress and re-watering. Plant Growth Regulation. https://doi.org/10.1007/s10725-007-9202-2

  • Mahouachi, J., López-Climent, M. F., & Gómez-Cadenas, A. (2014). Hormonal and hydroxycinnamic acids profiles in banana leaves in response to various periods of water stress. The Scientific World Journal 2014. https://doi.org/10.1155/2014/540962

  • Mansour, H. A., Pibars, K., Abd El-Hady, M., & Eldardiry, E. I. (2014). Effect of water management by drip irrigation automation controller system on faba bean production under water deficit. International Journal of Geomate. https://doi.org/10.21660/2014.14.140531

  • Manzanero, B. C., Anguiano, K. G., Todd, J. N., Tah, R. G., Arango, R. G., Simá, M. A., & Canché, B. C. (2021). Analysis of Pseudocercospora fijiensis genes upregulated during early interaction with Musa acuminata (var. dwarf cavendish). Bionatura. https://doi.org/10.21931/RB/2021.06.01.15

    Article  Google Scholar 

  • Masupha, T. E., & Moeletsi, M. E. (2018). Analysis of potential future droughts limiting maize production, in the luvuvhu river catchment area, South Africa. Physics and Chemistry of the Earth,.https://doi.org/10.1016/j.pce.2018.03.009

  • May, G. D., Afza, R., Mason, H. S., Wiecko, A., Novak, F. J., & Arntzen, C. J. (1995). Generation of transgenic banana (musa acuminata) plants via agrobacterium-mediated transformation. Bio/technology. https://doi.org/10.1038/nbt0595-486

    Article  Google Scholar 

  • Mazumdar, P., Lau, S. E., Singh, P., Takhtgahi, H. M., & Harikrishna, J. A. (2019). Impact of sea-salt on morpho-physiological and biochemical responses in banana (Musa acuminata cv. Berangan). Physiology and Molecular Biology of Plants, 25(3), 713–726. https://doi.org/10.1007/s12298-019-00659-3

  • Milburn, J., Kallarackal, J., & Baker, D. (1990). Water relations of the banana. I. predicting the water relations of the field-grown banana using the exuding Latex. Functional Plant Biology. https://doi.org/10.1071/pp9900057

    Article  Google Scholar 

  • Mitsou, E. K., Kougia, E., Nomikos, T., Yannakoulia, M., Mountzouris, K. C., & Kyriacou, A. (2011). Effect of banana consumption on faecal microbiota: A randomised, controlled trial. Anaerobe. https://doi.org/10.1016/j.anaerobe.2011.03.018

    Article  Google Scholar 

  • Muthusamy, M., Uma, S., Backiyarani, S., Saraswathi, M. S., & Chandrasekar, A. (2016). Transcriptomic changes of drought-tolerant and sensitive banana cultivars exposed to drought stress. Frontiers in Plant Science, 7, 1–14. https://doi.org/10.3389/fpls.2016.01609

    Article  Google Scholar 

  • Nakato, G. V., Christelová, P., Were, E., Nyine, M., Coutinho, T. A., Doležel, J., Uwimana, B., Swennen, R., & Mahuku, G. (2019). Sources of resistance in Musa to Xanthomonas campestris pv. musacearum the causal agent of banana xanthomonas wilt. Plant Pathology, 68(1), 49–59. https://doi.org/10.1111/ppa.2019.68.issue-110.1111/ppa.12945.

  • Ndabamenye, T., Van Asten, P. J. A., Vanhoudt, N., Blomme, G., Swennen, R., Annandale, J. G., & Barnard, R. O. (2012). Ecological characteristics influence farmer selection of on-farm plant density and bunch mass of low input East African highland banana (Musa spp.) cropping systems. Field Crops Research, 135, 126–136. https://doi.org/10.1016/j.fcr.2012.06.018

    Article  Google Scholar 

  • Nuruddin, M. M., Madramootoo, C. A., & Dodds, G. T. (2003). Effects of water stress at different growth stages on greenhouse tomato yield and quality. Hortscience. https://doi.org/10.21273/hortsci.38.7.1389

  • Nwauzoma, A., & Jaja, E. (2013). A review of somaclonal variation in plantain (Musa spp): Mechanisms and applications. Journal of Applied Biosciences. https://doi.org/10.4314/jab.v67i0.95046

    Article  Google Scholar 

  • Ochola, D., Ocimati, W., Tinzaara, W., Blomme, G., & Karamura, E. B. (2015). Effects of water stress on the development of banana xanthomonas wilt disease Plant Pathology, 64(3), 552–558. https://doi.org/10.1111/ppa.12281

  • Okonya, J. S., Ocimati, W., Nduwayezu, A., Kantungeko, D., Niko, N., Blomme, G., Legg, J. P., & Kroschel, J. (2019). Farmer reported pest and disease impacts on root, tuber, and banana crops and livelihoods in Rwanda and Burundi. Sustainability (Switzerland). https://doi.org/10.3390/su11061592

    Article  Google Scholar 

  • Olivares, B. O., Rey, J. C., Lobo, D., Navas-Cortés, J. A., Gómez, J. A., & Landa, B. B. (2021). Fusarium wilt of bananas: A review of agro-environmental factors in the venezuelan production system affecting its development. Agronomy. https://doi.org/10.3390/agronomy11050986

    Article  Google Scholar 

  • Olumba, C. C., & Onunka, C. N. (2020). Banana and plantain in West Africa: Production and marketing. African Journal of Food, Agriculture, Nutrition and Development. https://doi.org/10.18697/AJFAND.90.18365

    Article  Google Scholar 

  • Pachauri, R.K., et al. (2014). Climate change 2014 synthesis report summary chapter for policymakers. Ipcc.

  • Panepinto, D., Riggio, V. A., & Zanetti, M. (2021). Analysis of the emergent climate change mitigation technologies. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph18136767

    Article  Google Scholar 

  • Placide, R. (2012). Development of in vitro technique to screen for drought tolerant banana varieties by sorbitol induced osmotic stress. African Journal of Plant Science. https://doi.org/10.5897/ajps12.101

  • Pollard, C. M., Landrigan, T. J., Ellies, P. L., Kerr, D. A., Underwood Lester, M. L., & Goodchild, S. E. (2014). Geographic factors as determinants of food security: A western australian food pricing and quality study. Asia pacific Journal of Clinical Nutrition, 23(4), 703–713. https://doi.org/10.6133/apjcn.2014.23.4.12

  • Rao, C. S., Gopinath, K. A., Prasad, J. V. N. S., & Singh, A. K. (2016). Climate resilient villages for sustainable food security in tropical india: Concept, process, technologies, institutions, and impacts. Advances in Agronomy, 140, 101–214. https://doi.org/10.1016/bs.agron.2016.06.003

  • Ravi, I., Uma, S., Vaganan, M. M., & Mustaffa, M. M. (2013). Phenotyping bananas for drought resistance. Frontiers in Physiology, 4, 1–15. https://doi.org/10.3389/fphys.2013.00009

    Article  CAS  Google Scholar 

  • Ravi, I., & Vaganan, M. M. (2016). Abiotic stress tolerance in banana. In abiotic stress physiology of horticultural crops (pp. 207–222). New Delhi: Springer India. https://doi.org/10.1007/978-81-322-2725-0_12

  • Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants. https://doi.org/10.3390/plants8020034

    Article  Google Scholar 

  • Reinhardt, D. H., Dos Santos-Serejo, J. A., & Da, J. (2013). Panorama of the banana industry in latin America and the caribbean Islands, with a special focus on Brazil. Acta Horticulturae. https://doi.org/10.17660/actahortic.2013.986.1

    Article  Google Scholar 

  • Rocha, A. D. J., Soares, J. M. D. S., Nascimento, F. D. S., Santos, A. S., Amorim, V. B. D. O., Ferreira, C. F., & Amorim, E. P. (2021). Improvements in the resistance of the banana species to fusarium wilt: A systematic review of methods and perspectives. Journal of Fungi. https://doi.org/10.3390/jof7040249

    Article  Google Scholar 

  • Roy Choudhury, S., Roy, S., Singh, S. K., & Sengupta, D. N. (2010). Molecular characterization and differential expression of β-1,3-glucanase during ripening in banana fruit in response to ethylene, auxin, ABA, wounding, cold and light-dark cycles. Plant Cell Reports, 29, 813–828. https://doi.org/10.1007/s00299-010-0866-0

  • Sabiiti, G., Mwalichi Ininda, J., Ogallo, L., Opijah, F., Nimusiima, A., Otieno, G., Ddumba, S. D., Nanteza, J., & Basalirwa, C. (2016). Empirical relationships between banana yields and climate variability over Uganda. Journal of Environmental and Agricultural Sciences, 7(3), 3–13.

    Google Scholar 

  • Sági, L., Panis, B., Remy, S., Schoofs, H., Smet, K. . De., Swennen, R., & Cammue, B. P. A. (1995). Genetic transformation of banana and plantain (Musa spp.) via particle bombardment. Bio/Technology. https://doi.org/10.1038/nbt0595-481

    Article  Google Scholar 

  • Sagi, L., Remy, S., Panis, B., Swennen, R., & Volckaert, G. (1994). Transient gene expression in electroporated banana (Musa spp., cv. Bluggoe ABB group) protoplasts isolated from regenerable embryogenetic cell suspensions. Plant Cell Reports. https://doi.org/10.1007/BF00233316

    Article  Google Scholar 

  • Said, E. M., Mahmoud, R. A., Al-Akshar, R., & Safwat, G. (2015). Drought stress tolerance and enhancement of banana plantlets in vitro. Austin Journal of Biotechnology & Bioengineering, 2(2), 1040–1046.

  • Salvacion, A. R. (2020). Effect of climate on provincial-level banana yield in the Philippines. Information Processing in Agriculture, 7(1), 50–57. https://doi.org/10.1016/j.inpa.2019.05.005

    Article  Google Scholar 

  • Santos, A. S., Amorim, E. P., Ferreira, C. F., & Pirovani, C. P. (2018). Water stress in Musa spp. A systematic review. PLoS One, 13(12), e0208052. https://doi.org/10.1371/journal.pone.0208052

  • Sarkar, C., Bairy, K. L., Rao, N. M., & Udupa, E. G. P.(1999). Effect of banana on cold stress test and peak expiratory flow rate in healthy volunteers. Indian Journal of Medical Research, 110, 27.

  • Segura, M. R. A., Stoorvogel, J. J., Blanco, R. F. A., & Sandoval, F. J. A. (2021). A medium-term field experiment to study the effect of managing soil chemical properties on Fusarium wilt in banana (Musa AAA). Journal of Fungi, 7(4), 261. https://doi.org/10.3390/jof7040261

  • Sharkey, T. D., & Schrader, S. M. (2006). High temperature stress. Physiology and Molecular Biology of Stress Tolerance in Plants. https://doi.org/10.1007/1-4020-4225-6_4

    Article  Google Scholar 

  • Sharrock, S. L., Orjeda, G., & Frison, E. A. (1998). Promusa-a global programme for Musa improvement. Acta Horticulturae. https://doi.org/10.17660/ActaHortic.1998.490.33

    Article  Google Scholar 

  • Shekhar, S., Rustagi, A., Kumar, D., Yusuf, M. A., Sarin, N. B., & Lawrence, K. (2019). Groundnut AhcAPX conferred abiotic stress tolerance in transgenic banana through modulation of the ascorbate–glutathione pathway. Physiology and Molecular Biology of Plants, 25(6), 1349–1366. https://doi.org/10.1007/s12298-019-00704-1

    Article  Google Scholar 

  • Shimwela, M. M., Ploetz, R. C., Beed, F. D., Jones, J. B., Blackburn, J. K., Mkulila, S. I., & van Bruggen, A. H. C. (2016). Banana xanthomonas wilt continues to spread in Tanzania despite an intensive symptomatic plant removal campaign: An impending socio-economic and ecological disaster. Food Security. https://doi.org/10.1007/s12571-016-0609-3

    Article  Google Scholar 

  • Shivashankara, K. S., Pavithra, K. C., Geetha, G. A., Roy, T. K., Patil, P., Patel, A. N., Shaikh, N. B., Bhagavan, B. V. K., & Menon, R. (2020). Differential response of banana cultivars (Musa spp.) to temperature-induced changes in fruit quality. Fruits, 75(5), 183–193. https://doi.org/10.17660/th2020/75.5.1

  • Shongwe, V. D., Tumber, R., Masarirambi, M. D., & Mutukumira, A. N. (2008). Soil water requirements of tissue-cultured dwarf Cavendish banana (Musa spp. L). Physics and Chemistry of the Earth, 33, 768–774. https://doi.org/10.1016/j.pce.2008.06.018

    Article  Google Scholar 

  • Siamak, S. B., & Zheng, S. (2018). Banana fusarium wilt (Fusarium oxysporum f. sp. cubense) control and resistance, in the context of developing wilt-resistant bananas within sustainable production systems. Horticultural Plant Journal. https://doi.org/10.1016/j.hpj.2018.08.001

    Article  Google Scholar 

  • Smith, M. N., Stark, S. C., Taylor, T. C., Ferreira, M. L., de Oliveira, E., Restrepo‐Coupe, N., Chen, S., Woodcock, T., Dos Santos, D. B., Alves, l. F., Figueira, M., De Camargo, P. B., De Oliveira, R. C., Aragão, l. E. O. C., Falk, D. A., Mcmahon, S. M., Huxman, T. E., & Saleska, S. R. (2019). Seasonal and drought‐related changes in leaf area profiles depend on height and light environment in an Amazon forest. New Phytologist, 222(3), 1284–1297. https://doi.org/10.1111/nph.15726

  • Som, D., Tyagi, M., Chauhan, N., Kumar, A., Jabi, S., Juyal, P., Singh, C., & Gaurav, N. (2018). A review on biology and study of major viral diseases in banana. The Pharma Innovation Journal, 7, 218–212.

    CAS  Google Scholar 

  • Stewart, A. L., & Ahmed, S. (2019). Effects of climate change on fruit nutrition. In Fruit crops: Diagnosis and management of nutrient constraints. https://doi.org/10.1016/b978-0-12-818732-6.00007-1

  • Subandiyah, S., Rahayuniati, R. F., Hartono, S., Somowiyarjo, S., & Soffan, A. (2020). RNA-seq data of banana bunchy top virus (BBTV) viruliferous and non-viruliferous banana aphid (Pentalonia nigronervosa). Data in Brief. https://doi.org/10.1016/j.dib.2019.104860

    Article  Google Scholar 

  • Sutrawati, M., & Ginting, S. (2020). First report of banana bunchy top disease on banana in Bengkulu. AGRITROPICA: Journal of Agricultural Sciences. https://doi.org/10.31186/j.agritropica.3.2.82-87

    Article  Google Scholar 

  • Tchatchambe, N. B., Ibanda, N., Adheka, G., Onautshu, O., Swennen, R., & Dhed’a, D. (2020). Production of banana bunchy top virus (BBTV)-free plantain plants by in vitro culture. African Journal of Agricultural Research. https://doi.org/10.5897/ajar2019.14522

    Article  Google Scholar 

  • Teoh, E. Y., Teo, C. H., Baharum, N. A., Pua, T.-L., & Tan, B. C. (2022). Waterlogging stress induces antioxidant defense responses, aerenchyma formation and alters metabolisms of banana plants. Plants, 11(15), 2052. https://doi.org/10.3390/plants11152052

    Article  CAS  Google Scholar 

  • Tripathi, L., Ntui, V. O., & Tripathi, J. N. (2019). Application of genetic modification and genome editing for developing climate-smart banana. Food and Energy Security. https://doi.org/10.1002/fes3.168

    Article  Google Scholar 

  • Turner, D. W., Fortescue, J. A., Ocimati, W., & Blomme, G. (2016). Plantain cultivars (Musa spp. AAB) grown at different altitudes demonstrate cool temperature and photoperiod responses relevant to genetic improvement. Field Crops Research, 194, 103–111. https://doi.org/10.1016/j.fcr.2016.02.006

    Article  Google Scholar 

  • Turner, D. W., Fortescue, J. A., & Thomas, D. S. (2007). Environmental physiology of the bananas (Musa spp.). Brazilian Journal of Plant Physiology, 19, 463–484. https://doi.org/10.1590/s1677-04202007000400013

  • Turner, D. W., & Thomas, D. S. (1998). Measurements of plant and soil water status and their association with leaf gas exchange in banana (Musa spp.): A laticiferous plant. Scientia Horticulturae. https://doi.org/10.1016/S0304-4238(98)00168-X

    Article  Google Scholar 

  • Uwimana, B., Zorrilla-Fontanesi, Y., van Wesemael, J., Mduma, H., Brown, A., Carpentier, S., & Swennen, R. (2021). Effect of seasonal drought on the agronomic performance of four banana genotypes (Musa spp.) in the East African highlands. Agronomy, 11(1), 4. https://doi.org/10.3390/agronomy11010004

  • Van Der Waal, J. W. H., & Moss, J. R. J. (2013). Just green bananas: towards full sustainability of the export banana trade. Acta Horticulturae. https://doi.org/10.17660/ActaHortic.2013.986.31

    Article  Google Scholar 

  • Vázquez-Euán, R., Chi-Manzanero, B., Hernández-Velázquez, I., Tzec-Simá, M., Islas-Flores, I., Martínez-Bolaños, L., Garrido-Ramírez, E. R., & Canto-Canché, B. (2019). Identification of new hosts of pseudocercospora fijiensis suggests innovative pest management programs for black sigatoka disease in banana plantations. Agronomy. https://doi.org/10.3390/agronomy9100666

    Article  Google Scholar 

  • Vendramin, S., Huang, J., Crisp, P. A., Madzima, T. F., & McGinnis, K. M. (2020). Epigenetic regulation of ABA-induced transcriptional responses in maize. G3 Genes, Genomes, Genetics. https://doi.org/10.1534/g3.119.400993

    Article  Google Scholar 

  • Villao, L., Flores, J., & Efrén, S. O. (2021). Genetic transformation of apical meristematic shoots in the banana cultivar Williams. Bionatura. https://doi.org/10.21931/RB/2021.06.01.4

    Article  Google Scholar 

  • Vriezen, W. H., Van Rijn, C. P. E., Voesenek, L. A. C. J., & Mariani, C. (1997). A homolog of the Arabidopsis thaliana ERS gene is actively regulated in Rumex palustris upon flooding. Plant Journal. https://doi.org/10.1046/j.1365-313X.1997.11061265.x

    Article  Google Scholar 

  • Wang, B. X., Hof, A. R., & Ma, C. Sen. (2022). Impacts of climate change on crop production pests and pathogens of wheat and rice. Frontiers of Agricultural Science and Engineering. https://doi.org/10.15302/J-FASE-2021432

    Article  Google Scholar 

  • Wang, X., Yu, R., & Li, J. (2021a). Using genetic engineering techniques to develop banana cultivars with fusarium wilt resistance and ideal plant architecture. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2020.617528

    Article  Google Scholar 

  • Wang, Z., Zhang, T. Q., Tan, C. S., Xue, L., Bukovsky, M., & Qi, Z. M. (2021). Modeling impacts of climate change on crop yield and phosphorus loss in a subsurface drained field of Lake Erie region, Canada. Agricultural Systems. https://doi.org/10.1016/j.agsy.2021.103110

    Article  Google Scholar 

  • Xu, S., Zhang, Y., Li, J., Lin, C., & Lin, Z. (2018). Research progress and improvement direction of squeezing dehydration technology and equipment of banana pseudostem. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering. https://doi.org/10.11975/j.issn.1002-6819.2018.23.009

  • Yang, Q. S., Gao, J., He, W. D., Dou, T. X., Ding, L. J., Wu, J. H., Li, C. Y., Peng, X. X., Zhang, S., & Yi, G. J. (2015). Comparative transcriptomics analysis reveals difference of key gene expression between banana and plantain in response to cold stress. BMC Genomics, 16(1), 1–18. https://doi.org/10.1186/s12864-015-1551-z

    Article  CAS  Google Scholar 

  • Yin, Y., Gao, Y., Lin, D., Wang, L., Ma, W., & Wang, J. A. (2021). Mapping the global-scale maize drought risk under climate change based on the GEPIC-Vulnerability-Risk model. International Journal of Disaster Risk Science, 12(3), 428–442. https://doi.org/10.1007/s13753-021-00349-3

  • Zahid, K. R., Ali, F., Shah, F., Younas, M., Shah, T., Shahwar, D., Hassan, W., Ahmad, Z., Qi, C., Lu, Y., Iqbal, A., & Wu, W. (2016). Response and tolerance mechanism of cotton Gossypium hirsutum L. To elevated temperature stress: A review. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2016.00937

    Article  Google Scholar 

  • Zhang, L., Cenci, A., Rouard, M., Zhang, D., Wang, Y., Tang, W., & Zheng, S. J. (2019). Transcriptomic analysis of resistant and susceptible banana corms in response to infection by Fusarium oxysporum f. sp. cubense tropical race 4. Scientific Reports. https://doi.org/10.1038/s41598-019-44637-x

    Article  Google Scholar 

  • Zhou, W., Chen, F., Meng, Y., Chandrasekaran, U., Luo, X., Yang, W., & Shu, K. (2020). Plant waterlogging/flooding stress responses: From seed germination to maturation. Plant Physiology and Biochemistry. https://doi.org/10.1016/j.plaphy.2020.01.020

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the Nanjing University of Information Science and Technology for providing a favorable working environment and technological support for conducting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenghua Hu or Abu Reza Md. Towfiqul Islam.

Ethics declarations

Conflict of interest

None of the authors has any conflict of interest to declare.

Ethical approval

Not applicable.

Consent to participate

All authors agreed to contribute to this study.

Consent to publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdoussalami, A., Hu, Z., Islam, A.R.M.T. et al. Climate change and its impacts on banana production: a systematic analysis. Environ Dev Sustain 25, 12217–12246 (2023). https://doi.org/10.1007/s10668-023-03168-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-023-03168-2

Keywords

Navigation