Skip to main content
Log in

Correlated Parameters Uncertainty Propagation in a Rainfall-Runoff Model, Considering 2-Copula; Case Study: Karoon III River Basin

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Hydrological models are widely used to investigate practical issues of water resources. Parametric uncertainty is considered as one of the most important sources of uncertainty in environmental researches. Generally, it is assumed that the parameters are independent mutually, but correlation within the parameter space is an important factor having the potential to cause uncertainty. The objective and innovation of this study was to address the effects of parameters correlation on a continuous hydrological model uncertainty. HEC-HMS with soil moisture accounting (SMA) infiltration method was used to model daily flows and simulate certainty bounds for Karoon III basin, southwest of IRAN, in two scenarios, independent and correlated parameters using 2-copula. The parameters were represented by probability distributions, and the effect on prediction error were evaluated using Latin hypercube sampling (LHS) on Monte Carlo simulation (MCS). Saturated hydraulic conductivity (K), Clark storage-coefficient (R), and time of concentration (tc) were chosen for investigation, based on observed sensitivity analysis of simulated peak over threshold (POT). One hundred runs were randomly generated from 100 parameter sets captured from LHS of parameters distributions in each sub-basin. Using generated parameter sets, 100 continuous hydrographs were simulated and values of certainty bounds calculated. Results showed that when 2-copula correlated R and tc, with 0.656 Kendall’s Tau and 0.818 Spearman’s Rho coefficients, were propagated, decreasing of outputs’ sharpness was more than when considering K and R (K-R), with 0.166 and 0.262; therefore, incorporation of correlations in the MCS is important, especially when the correlation coefficients exceed 0.65. The model was evaluated at the outlet of the basin using daily stream flow data. Model reliability was better for above-normal flows than normal and below-normal. Reliability increases of simulated flow when considering correlated R-tc was more than K-R because of the correlation values. Incorporation of copula for K-tc not only did not improve the model reliability but also decreased it. Results showed improvement of model reliability, by decreasing predicted error of hydrologic modeling, when dealing with correlated parameters in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Percent-error-in-peak=100 \( \left|\frac{q_{\mathrm{s}}\left(\mathrm{peak}\right)\hbox{-} {q}_{\mathrm{o}}\left(\mathrm{peak}\right)}{q_{\mathrm{o}}\left(\mathrm{peak}\right)}\right| \)

References

  1. Lin, K., Zhang, Q., & Chen, X. (2010). An evaluation of impacts of DEM resolution and parameter correlation on TOPMODEL modeling uncertainty. Journal of Hydrology, 394, 370–383.

    Article  Google Scholar 

  2. Sentz, K., & Ferson, S. (2002). SAND2002-0835 Technical Report. In Combination of evidence in Dempster-Shafer theory. New Mexico: Sandia National Laboratories.

    Chapter  Google Scholar 

  3. Zimmermann, H. J. (2001). Fuzzy set theory—and its applications. The Netherlands: Kluwer Academic Pub.

    Book  Google Scholar 

  4. Mansour-Rezaei, S., Naser, G., & Sadiq, R. (2012). A comparison of various uncertainty models: an example of sunsurface contamination transport. Journal of Hydro-environment Research, 6(4), 311–321.

    Article  Google Scholar 

  5. Janssen, H. (2013). MC based uncertainty analysis: sampling efficiency and sampling convergence. Reliab. Eng. Sys. Safe, 109, 123–132.

    Article  Google Scholar 

  6. Beven, K. J., & Freer, J. (2001). Equifinality, data assimilation, and uncertainty estimation in mechanistic modeling of complex environmental systems using the GLUE methodology. Journal of Hydrology, 249(1–4), 11–29.

    Article  Google Scholar 

  7. Kuczera, G., & Parent, E. (1998). MC assessment of parameter uncertainty in conceptual catchment models: the metropolis algorithm. Journal of Hydrology, 211, 69–85.

    Article  Google Scholar 

  8. Dalbey, K., Patra, A. K., Pitman, E. B., Bursik, M. I., & Sheridan, M. F. (2008). Input uncertainty propagation methods and hazard mapping of geophysical mass flows. Journal of Geophysical Research, 113, B05203.

    Article  Google Scholar 

  9. Dongquan, Z., Jining, C., Haozheng, W., & Qingyuan, T. (2013). Application of a sampling based on the combined objectives of parameter identification and uncertainty analysis of an urban rainfall-runoff model. Journal of Irrigation and Drainage Engineering, 139(1), 66–74.

    Article  Google Scholar 

  10. Ye, M., Pan, F., Wu, Y.-S., Hu, B.-X., Shirley, C., & Yu, Z. (2007). Assessment of radionuclide transport uncertainty in the unsaturated zone of Yucca Mountain. Advances in Water Resources, 30, 118–134.

    Article  Google Scholar 

  11. Yu, P.-S., Yang, T.-C., & Chen, S.-J. (2001). Comparison of uncertainty analysis methods for a distributed rainfall-runoff model. Journal of Hydrology, 244, 43–59.

    Article  Google Scholar 

  12. McRae, G. J., Tilden, J. W., & Seinfeld, J. H. (1982). Global sensitivity analysis—a computational implementation of the FAST. Computers and Chemical Engineering, 6(1), 15–25.

    Article  Google Scholar 

  13. Saltelli, A., Chan, K., & Scott, M. (2000). Sensitivity analysis. Probability and statistics series. West Sussex: Wiley.

    Google Scholar 

  14. Xu, C., & Gertner, G. Z. (2008). Uncertainty and sensitivity analysis for models with correlated parameters. Reliability Engineering and System Safety, 93, 1563–1573.

    Article  Google Scholar 

  15. Vose, D. (2000). Risk Analysis. Chichester: Wiley.

    Google Scholar 

  16. Wu, Y. F. (2008). Correlated sampling techniques used in MCS for risk assessment. International Journal of Pressure Vessels and Piping., 85(9), 662–669.

    Article  CAS  Google Scholar 

  17. Pan, F., Zhu, J., Ye, M., Pachepsky, Y. A., & Wu, Y.-S. (2011). Sensitivity analysis of unsaturated flow and contaminant transport with correlated parameters. Journal of Hydrology, 397, 238–249.

    Article  Google Scholar 

  18. Hwang, Y., Clark, M. P., & Rajagopalan, B. (2011). Use of daily precipitation uncertainties in stream flow simulation and forecast. Stochastic Environmental Research and Risk Assesment, 25, 957–972.

    Article  Google Scholar 

  19. Gabellani, S., Boni, G., Ferraris, L., Handerberg, J. V., & Provenzale, A. (2007). Propagation of uncertainty from rainfall to runoff: a case study with a stochastic rainfall generator. Advances in Water Resources, 30, 2061–2071.

    Article  Google Scholar 

  20. Moulin, L., Gaume, E., & Obled, C. (2009). Uncertainties on mean areal precipitation: assessment and impact on streamflow simulations. Hydrology and Earth System Sciences, 13, 99–114.

    Article  Google Scholar 

  21. Chang, J.-H., Tung, Y.-K., & Yang, J.-C. (1994). MCS for correlated variables with marginal distributions. Journal of Hydraulic Engineering, 120(3), 313–331.

    Article  Google Scholar 

  22. Garcia, A., Sainz, A., Revilla, J. A., Alvarez, C., Juanes, J. A., & Puente, A. (2008). Surface water resources assessment in scarcely gauged basins in the north of Spain. Journal of Hydrology, 356, 312–326.

    Article  Google Scholar 

  23. Goda, K. (2010). Statistical modeling of joint probability distribution using copula: application to peak and permanent displacement seismic demands. Structural Safety, 32, 112–123.

    Article  Google Scholar 

  24. Razmkhah, H., Akhound Ali, A. M., Radmanesh, F., & Saghafian, B. (2016a). Evaluation of rainfall spatial correlation effect on rainfall-runoff modeling uncertainty, considering 2-copula. Arabian Journal of Geosciences, 9, 323.

    Article  Google Scholar 

  25. Sklar, A. (1959). Fonctions de repartition an dimensions et leurs marges. Publications de l’Institut Statistique de l’Universite de Paris, 8, 229–231.

    Google Scholar 

  26. Dupuis, D. J. (2007). Using copulas in hydrology: benefits, cautions, and issues. Journal of Hydrologic Engineering, 12(4), 381–393.

    Article  Google Scholar 

  27. Golian, S., Saghafian, B., Elmi, M. and Maknoon, R. (2011) Probabilistic rainfall thresholds for flood forecasting: evaluating different methodologies for modelling rainfall spatial correlation (or dependence), Hydrocarbon Processing, 25(13): 2046–2055

  28. Nelson, R. B. (2006). An introduction to copulas. New York: Springer.

    Google Scholar 

  29. Schepsmeier, U. and Brechmann E. Ch. (2013) Statistical inference of C- and D-vine copulas, Package CDVine of R software.

  30. Bennett, T.H. (1998) Development and application of a continuous soil moisture accounting algorithm for the HEC-HMS. MS thesis, Dept. of Civil and Env. Eng., Univ. of California, Davis.

  31. Razmkhah, H. (2016). Comparing performance of different loss methods in rainfall-runoff modeling. Water Resources, 43(1), 207–224.

    Article  CAS  Google Scholar 

  32. USACE. (2000). HEC-HMS, technical reference manual. New York: US Army Corps of Engineers (USACE), Hydrol. Eng. Center.

    Google Scholar 

  33. Vorechovskey, M., & Vovak, D. (2009). Correlation control in small-sample MC type simulations I: a simulated annealing approach. Probabilistic Engineering Mechanics, 24, 452–462.

    Article  Google Scholar 

  34. Razmkhah, H., Saghafian, B., Akhound Ali, A. M., & Radmanesh, F. (2016b). Rainfall-Runoff modeling considering soil moisture accounting algorithm, case study: Karoon III river basin. Water Resources, 43(4), 699–710.

    Article  CAS  Google Scholar 

  35. Cunderlik, J.M. and Simonovic, S.P. (2004a) Selection of calibration and verification data for the HEC-HMS hydrologic model, CFCAS project, The university of Western Ontario, Project Report II.

  36. Sorooshian, S., Duan, Q., & Gupta, V. K. (1993). Calibration of rainfall-runoff models: application of global optimization to the Sacramento soil moisture accounting model. Water Resources Research, 29, 1185–1194.

    Article  Google Scholar 

  37. Ferdinand, B., Hellweger, L., & Maidment, D. R. (1999). Definition and connection of hydrologic elements using geographic data. Journal of Hydrologic Engineering, 10, 10–18.

    Google Scholar 

  38. Cunderlik, J.M. and Simonovic, S.P. (2004b) Calibration, verification and sensitivity analysis of the HEC-HMS hydrologic model, CFCAS project, The university of Western Ontario, Project Report IV.

  39. Berthet, L., Andr’eassian, V., Perrin, C., & Javelle, P. (2009). How crucial is it to account for the antecedent moisture conditions in flood forecasting? Comparison of event-based and continuous approaches on 178 catchments. Hydrology and Earth System Sciences, 13, 819–831.

    Article  Google Scholar 

  40. Grimaldi, S., Petroselli, A., & Nardi, F. (2012). A parsimonious geomorphological unit hydrograph for rainfall–runoff modelling in small ungauged basins. Hydrological Science Journal, 57(1), 73–83.

    Article  Google Scholar 

  41. Cunge, J. A. (1969). On the subject of a flood propagation computation method (Muskingum method). Journal of Hydraulic Research, 7(7), 205–230.

    Article  Google Scholar 

  42. Fontaine, T. A., Cruickshank, T. S., Arnold, J. G., & Hotchkiss, R. H. (2002). Development of a snowfall-snowmelt routine for mountainous terrain for the SWAT. Journal of Hydrology, 262, 209–223.

    Article  Google Scholar 

  43. USACE (2010) HEC-HMS, User’s Manual, Version 3.5. USACE, Hydrol. Eng. Center.

  44. Flemming, M., & Neary, V. (2004). Continuous hydrologic modeling study with the hydrologic modeling system. Journal of Hydrologic Engineering, 9(3), 175–183.

    Article  Google Scholar 

  45. Benke, K. K., Lowell, K. E., & Hamilton, A. J. (2008). Parameter uncertainty, sensitivity analysis and prediction error in a water-balance hydrological model. Mathematical Computer Modelling, 47, 1134–1149.

    Article  Google Scholar 

  46. Rousseau, M., Cerdan, O., Ern, A., Maitre, O. L., & Sochala, P. (2012). Study of overland flow with uncertain infiltration using stochastic tolls. Advances Water Resources, 38, 1–12.

    Article  Google Scholar 

  47. Tietje, O., & Richter, O. (1992). Stochastic modeling of the unsaturated water flow using auto-co spatially variable hydraulic parameter. Model Geo-Biosphere proc., 1, 163–183.

    Google Scholar 

  48. Cosby, B. J., Hornberger, G. M., Clapp, R. B., & Ginn, T. R. (1984). A statistical exploration of the relationship of soil moisture characteristics to the physical properties of soils. Water Resources Research, 20, 682–690.

    Article  Google Scholar 

  49. Wu, F.-C., & Tsang, Y.-P. (2004). Second-order MC uncertainty/variability analysis using correlated model parameters: application to salmonid survival risk assessment. Ecological Modelling, 177, 393–414.

    Article  Google Scholar 

  50. Law, J.A. (1944) Statistical approach to the interstitial heterogeneity of sand reservoirs, Transactions of AIME, 155(1). https://doi.org/10.2118/944202-G

  51. Rogowski, A.S. (1972) Watershed physics: soil variability criteria. Water Resources Reseach, 8(4), 1015–1023.

  52. Sharma, M. L., Gander, G. A., & Hunt, C. G. (1980). Spatial variability of infiltration in a watershed. Journal of Hydrology, 45(1–2), 101–122.

    Article  Google Scholar 

  53. Govindaraju, R. S., Morbidelli, R., & Corradini, C. (2001). Areal infiltration modeling over soils with spatially correlated hydraulic conductivities. Journal of Hydrologic Engineering, 6(2), 150–158.

    Article  Google Scholar 

  54. Taibi, A. E., & Elfeki, A. (2011). Modeling hydrologic responses of the Zwalm catchment using the REW approach: propagation of uncertainty in the soil properties to model output. Arabian Journal of Geosciences, 4, 1005–1018.

    Article  Google Scholar 

  55. Straub, T.D., Melching, Ch. S. and Kocher, K.E. (2000) Equations for estimating clark unit-hydrograph parameters for rural watersheds in Illinois, Water-resources Investigation Report. 00-4184, USGS.

  56. Diaz-Ramirez, J. N., Johnson, B. E., McAnally, W. H., Martin, J. L., Alarcon, V. J., & Camacho, R. A. (2013). Estimation and propagation of parameter uncertainty in lump hydrological models: a case study of HSPF model applied to Luxapallila Creek watershed in southest USA. J. Hyrogeol. Hydraul. Eng., 2(1), 1000105.

    Google Scholar 

  57. Bukowski, J., Korn, L., & Wartenberg, D. (1995). Correlated inputs in quantitative risk assessment: the effect of distributional shape. Risk Analysis, 15, 215–219.

    Article  Google Scholar 

  58. Hass, C. N. (1999). On modeling correlated random variables in risk assessment. Risk Analysis, 19, 1205–1214.

    Google Scholar 

  59. Pohlmann, K. F., Hassan, A. E., & Chapman, J. B. (2002). Modeling density-driven flow and radionuclide transport at an underground nuclear test: uncertainty analysis and effect of parameter correlation. Water Resources Research, 38(5).

  60. Smith, A. E., Ryan, P. B., & Evans, J. S. (1992). The effect of neglecting correlations when propagating uncertainty and estimating the population distribution of risk. Risk Analysis, 12, 467–474.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Homa Razmkhah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razmkhah, H., AkhoundAli, AM. & Radmanesh, F. Correlated Parameters Uncertainty Propagation in a Rainfall-Runoff Model, Considering 2-Copula; Case Study: Karoon III River Basin. Environ Model Assess 22, 503–521 (2017). https://doi.org/10.1007/s10666-017-9569-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-017-9569-z

Keywords

Navigation