Skip to main content

Advertisement

Log in

The role of chemical fractionation in risk assessment of toxic metals: a review

  • Review
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The identification of highly toxic metals like Cd, Ni, Pb, Cr, Co or Cu in ambient particulate matter (PM) has garnered a lot of interest recently. Exposure to toxic metals, including carcinogenic ones, at levels above recommended limits, can significantly affect human health. Prolonged exposure to even trace amounts of toxic or essential metals can also have negative health impacts. In order to assess significant risks, it is crucial to govern the concentrations of bioavailable/bio-accessible metals that are available in PM. Estimating the total metal concentrations in PM is only an approximation of metal toxicity. This review provides an overview of various procedures for extracting soluble toxic metals from PM and the importance of chemical fractionation in risk assessment. It is observed that the environmental risk indices such as bioavailability index (BI), contamination factor (CF) and risk assessment code (RAC) are specifically influenced by the concentration of these metals in a particular fraction. Additionally, there is compelling evidence that health risks assessed using total metal concentrations may be overestimated, therefore, the metal toxicity assessment is more accurate and more sensitive to the concentration of the bioavailable/bio-accessible fraction than the total metal concentrations. Hence, chemical fractionation of toxic metals can serve as an effective tool for developing environmental protection laws and improving air quality monitoring programs for public health.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used in this study were sourced from a variety of places, including USEPA (United States Environmental Protection Agency) and published literature.

References

  • Adamson, I. Y. R., Prieditis, H., Hedgecock, C., & Vincent, R. (2000). Zinc is the toxic factor in the lung response to an atmospheric particulate sample. Toxicology and Applied Pharmacology, 166(2), 111–119. https://doi.org/10.1006/taap.2000.8955

    Article  CAS  Google Scholar 

  • Ahmad, W., Alharthy, R. D., Zubair, M., Ahmed, M., Hameed, A., & Rafique, S. (2021). Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-94616-4

    Article  CAS  Google Scholar 

  • Aina, M., Matejka, G., Mama, D., Yao, B., & Moudachirou, M. (2009). Characterization of stabilized waste: Evaluation of pollution risk. International Journal of Environmental Science and Technology, 6(1), 159–165. https://doi.org/10.1007/BF03326070

    Article  CAS  Google Scholar 

  • Anake, W. U., Ana, G. R. E. E., Williams, A. B., Fred-Ahmadu, O. H., & Benson, N. U. (2017). Chemical speciation and health risk assessment of fine particulate bound trace metals emitted from Ota Industrial Estate, Nigeria. IOP Conference Series: Earth and Environmental Science, 68(1), 12005. https://doi.org/10.1088/1755-1315/68/1/012005

    Article  Google Scholar 

  • Belmonte, J. L., Moreno-Guerrero, A. J., Núñez, J. A. L., & Sánchez, S. P. (2019). Analysis of the productive, structural, and dynamic development of augmented reality in higher education research on the web of science. Applied Sciences (switzerland). https://doi.org/10.3390/app9245306

    Article  Google Scholar 

  • Betha, R., Behera, S. N., & Balasubramanian, R. (2014). 2013 Southeast Asian smoke haze: Fractionation of particulate-bound elements and associated health risk. Environmental Science and Technology, 48(8), 4327–4335. https://doi.org/10.1021/es405533d

    Article  CAS  Google Scholar 

  • Betha, R., Pradani, M., Lestari, P., Joshi, U. M., Reid, J. S., & Balasubramanian, R. (2013). Chemical speciation of trace metals emitted from Indonesian peat fires for health risk assessment. Atmospheric Research, 122, 571–578. https://doi.org/10.1016/J.ATMOSRES.2012.05.024

    Article  CAS  Google Scholar 

  • Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9). https://doi.org/10.1016/j.heliyon.2020.e04691

  • Calvo, A. I., Alves, C., Castro, A., Pont, V., Vicente, A. M., & Fraile, R. (2013). Research on aerosol sources and chemical composition: Past, current and emerging issues. Atmospheric Research, 120–121, 1–28. https://doi.org/10.1016/j.atmosres.2012.09.021

    Article  CAS  Google Scholar 

  • Chester, R., Lin, F. J., & Murphy, K. J. T. (1989). A three stage sequential leaching scheme for the characterisation of the sources and environmental mobility of trace metals in the marine aerosol. Environmental Technology Letters, 10(10), 887–900. https://doi.org/10.1080/09593338909384810

    Article  CAS  Google Scholar 

  • Costa, D. L., & Dreher, K. L. (1997). Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. Environmental Health Perspectives, 105(Suppl), 1053–1060. https://doi.org/10.1289/ehp.97105s51053

    Article  Google Scholar 

  • Das, R., Khezri, B., Srivastava, B., Datta, S., Sikdar, P. K., Webster, R. D., & Wang, X. (2015). Trace element composition of PM2.5 and PM10 from Kolkata – a heavily polluted Indian metropolis. Atmospheric Pollution Research, 6(5), 742–750. https://doi.org/10.5094/APR.2015.083

    Article  CAS  Google Scholar 

  • Demirak, A., Kocakaya, M., & Keskin, F. (2022). Chemical fractions of toxic metals and assessment of risks on the environment and health in Mugla topsoils. International Journal of Environmental Science and Technology, 19(6), 5631–5648. https://doi.org/10.1007/S13762-021-03547-0/FIGURES/9

    Article  CAS  Google Scholar 

  • Du, Y., Xu, X., Chu, M., Guo, Y., & Wang, J. (2016). Air particulate matter and cardiovascular disease: The epidemiological, biomedical and clinical evidence. Journal of Thoracic Disease, 8(1), E8–E19. https://doi.org/10.3978/j.issn.2072-1439.2015.11.37

    Article  Google Scholar 

  • Duan, J., & Tan, J. (2013). Atmospheric heavy metals and Arsenic in China: Situation, sources and control policies. Atmospheric Environment, 74, 93–101. https://doi.org/10.1016/j.atmosenv.2013.03.031

    Article  CAS  Google Scholar 

  • Feng, X., et al. (2022). Oxidative potential and water-soluble heavy metals of size-segregated airborne particles in haze and non-haze episodes: Impact of the “Comprehensive Action Plan” in China. Science of the Total Environment, 814, 152774. https://doi.org/10.1016/j.scitotenv.2021.152774

    Article  CAS  Google Scholar 

  • Feng, X. D., Dang, Z., Huang, W. L., & Yang, C. (2009). Chemical speciation of fine particle bound trace metals. International Journal of Environmental Science and Technology, 6(3), 337–346. https://doi.org/10.1007/BF03326071

    Article  CAS  Google Scholar 

  • Fernández Espinosa, A. J., Ternero Rodríguez, M., Barragán De La Rosa, F. J., & Jiménez Sánchez, J. C. (2002). A chemical speciation of trace metals for fine urban particles. Atmospheric Environment, 36(5), 773–780. https://doi.org/10.1016/S1352-2310(01)00534-9

    Article  Google Scholar 

  • Gao, J., Tian, H., Cheng, K., Lu, L., Wang, Y., Wu, Y., Zhu, C., Liu, K., Zhou, J., Liu, X., Chen, J., & Hao, J. (2014). Seasonal and spatial variation of trace elements in multi-size airborne particulate matters of Beijing, China: Mass concentration, enrichment characteristics, source apportionment, chemical speciation and bioavailability. Atmospheric Environment, 99, 257–265. https://doi.org/10.1016/j.atmosenv.2014.08.081

    Article  CAS  Google Scholar 

  • Geiger, A., & Cooper, J. (2010). Overview of airborne metals regulations, exposure limits, health effects, and contemporary research. Draft Environmental Analysis, 3(9), 1–50.

    Google Scholar 

  • Ghani, J., Nawab, J., Faiq, M. E., Ullah, S., Alam, A., Ahmad, I., Ali, S. W., Khan, S., Ahmad, I., Muhammad, A., Ur Rahman, S. A., Abbas, M., Rashid, A., Hasan, S. Z., & Hamza, A. (2022). Multi-geostatistical analyses of the spatial distribution and source apportionment of potentially toxic elements in urban children’s park soils in Pakistan: A risk assessment study. Environmental Pollution, 311, 119961. https://doi.org/10.1016/j.envpol.2022.119961

    Article  CAS  Google Scholar 

  • Gope, M., Masto, R. E., George, J., & Balachandran, S. (2018). Tracing source, distribution and health risk of potentially harmful elements (PHEs) in street dust of Durgapur, India. Ecotoxicology and Environmental Safety, 154, 280–293. https://doi.org/10.1016/J.ECOENV.2018.02.042

    Article  CAS  Google Scholar 

  • Haswani, D., Sunder Raman, R., Yadav, K., Dhandapani, A., Iqbal, J., Naresh Kumar, R., Laxmi Prasad, S. V., Yogesh, A., Sadashiva Murthy, B. M., & Lokesh, K. S. (2023). Pollution characteristics and ecological risks of trace elements in PM2.5 over three COALESCE network sites - Bhopal, Mesra, and Mysuru, India. Chemosphere, 324, 138203. https://doi.org/10.1016/j.chemosphere.2023.138203

    Article  CAS  Google Scholar 

  • HEI. (2019). Health Effects Institute Annual Report.

  • Jan, R., Roy, R., Yadav, S., & Satsangi, P. G. (2018). Chemical fractionation and health risk assessment of particulate matter-bound metals in Pune, India. Environmental Geochemistry and Health, 40(1), 255–270. https://doi.org/10.1007/s10653-016-9900-7

    Article  CAS  Google Scholar 

  • Juda-Rezler, K., Zajusz-Zubek, E., Reizer, M., Maciejewska, K., Kurek, E., Bulska, E., & Klejnowski, K. (2021). Bioavailability of elements in atmospheric PM2.5 during winter episodes at Central Eastern European urban background site. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2020.117993

    Article  Google Scholar 

  • Kelly, F. J., & Fussell, J. C. (2012). Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. In Atmospheric Environment, 60, 504–526. https://doi.org/10.1016/j.atmosenv.2012.06.039

    Article  CAS  Google Scholar 

  • Kessler, A., Hedberg, J., Blomberg, E., & Odnevall, I. (2022). Reactive Oxygen Species Formed by metal and metal oxide nanoparticles in physiological media—a review of reactions of importance to nanotoxicity and proposal for categorization. Nanomaterials, 12(11), 1922. https://doi.org/10.3390/NANO12111922

    Article  CAS  Google Scholar 

  • Lakhani, A., Parmar, R. S., Satsangi, G. S., & Prakash, S. (2008). Size distribution of trace metals in ambient air of Agra. Indian Journal of Radio & Space Physics, 37(December), 434–442.

    CAS  Google Scholar 

  • Li, H., Qian, X., & Wang, Q. (2013). Heavy metals in atmospheric particulate matter: A comprehensive understanding is needed for monitoring and risk mitigation. Environmental Science and Technology, 47(23), 13210–13211. https://doi.org/10.1021/ES404751A

    Article  CAS  Google Scholar 

  • Li, H., Wang, J., Wang, Q., Qian, X., Qian, Y., Yang, M., Li, F., Lu, H., & Wang, C. (2015). Chemical fractionation of arsenic and heavy metals in fine particle matter and its implications for risk assessment: A case study in Nanjing, China. Atmospheric Environment, 103, 339–346. https://doi.org/10.1016/j.atmosenv.2014.12.065

    Article  CAS  Google Scholar 

  • Li, H., Wang, Q., Shao, M., Wang, J., Wang, C., Sun, Y., Qian, X., Wu, H., Yang, M., & Li, F. (2016). Fractionation of airborne particulate-bound elements in haze-fog episode and associated health risks in a megacity of southeast China. Environmental Pollution, 208, 655–662. https://doi.org/10.1016/j.envpol.2015.10.042

    Article  CAS  Google Scholar 

  • Li, H., Wu, H., Wang, Q., Yang, M., Li, F., Sun, Y., Qian, X., Wang, J., & Wang, C. (2017). Chemical partitioning of fine particle-bound metals on haze–fog and non-haze–fog days in Nanjing, China and its contribution to human health risks. Atmospheric Research, 183, 142–150. https://doi.org/10.1016/j.atmosres.2016.07.016

    Article  CAS  Google Scholar 

  • Li, Z., et al. (2014a). To what extent does air pollution affect happiness? The case of the Jinchuan mining area, China. Ecological Economics, 99, 88–99. https://doi.org/10.1016/j.ecolecon.2013.12.014

    Article  Google Scholar 

  • Li, X., Feng, L., Huang, C., Yan, X., & Zhang, X. (2014b). Potential hazardous elements (PHEs) in atmospheric particulate matter (APM) in the south of Xi’an during the dust episodes of 2001–2012 (NW China): Chemical fractionation, ecological and health risk assessment. Environmental Earth Sciences, 71(9), 4115–4126. https://doi.org/10.1007/s12665-013-2800-6

    Article  CAS  Google Scholar 

  • Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Annals of Internal Medicine, 151(4). https://doi.org/10.7326/0003-4819-151-4-200908180-00136

  • Liu, E. F., Shen, J., Yang, L. Y., Zhu, Y. X., Sun, Q. Y., & Wang, J. J. (2007). Chemical fractionation and pollution characteristics of heavy metals in the sediment of Nansihu Lake and its main inflow rivers, China. Huan Jing Ke Xue= Huanjing Kexue, 28(6), 1377–1383.

    CAS  Google Scholar 

  • Mishra, A., Pervez, S., Candeias, C., Verma, M., Bano, S., Dugga, P., Verma, S. R., Tamrakar, A., Shafi, S., Pervez, Y. F., & Gupta, V. (2021). Bioaccessiblity features of particulate bound toxic elements: Review of extraction approaches, concentrations and health risks. Journal of the Indian Chemical Society, 98(11). https://doi.org/10.1016/j.jics.2021.100212

  • Mishra, A., Pervez, S., Verma, M., Candeias, C., Pervez, Y. F., Dugga, P., Verma, S. R., Karbhal, I., Ghosh, K. K., Deb, M. K., Satnami, M. L., Shrivas, K., & Tamrakar, A. (2023). Chemical fractionation of particulate-bound metal(loid)s to evaluate their bioavailability, sources and associated cancer risk in India. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2022.159516

    Article  Google Scholar 

  • Molina, L., & Segura, A. (2021). Biochemical and metabolic plant responses toward polycyclic aromatic hydrocarbons and heavy metals present in atmospheric pollution. Plants, 10(11), 2305. https://doi.org/10.3390/plants10112305

    Article  CAS  Google Scholar 

  • Mukhtar, A., & Limbeck, A. (2013). Recent developments in assessment of bio-accessible trace metal fractions in airborne particulate matter: A review. Analytica Chimica Acta, 774, 11–25. https://doi.org/10.1016/j.aca.2013.02.008

    Article  CAS  Google Scholar 

  • Muntau, H., Quevauviller, P., & Griepink, B. (1993). Speciation of heavy metals in soils and sediments an account of the improvement and harmonization of extraction techniques undertaken under the auspices of the bcr of the commission of the european communities. International Journal of Environmental Analytical Chemistry, 51(1–4), 135–151. https://doi.org/10.1080/03067319308027619

    Article  Google Scholar 

  • Nawab, J., Rahman, A., Khan, S., Ghani, J., Ullah, Z., Khan, H., & Waqas, M. (2022). Drinking water quality assessment of government, non-government and self-based schemes in the disaster affected areas of Khyber Pakhtunkhwa, Pakistan. Exposure and Health, 0123456789. https://doi.org/10.1007/s12403-022-00511-2

  • Obiols, J., Devesa, R., & Sol, A. (1986). Speciation of heavy metals in suspended particulates in urban airt. Toxicological & Environmental Chemistry, 13(1–2), 121–128. https://doi.org/10.1080/02772248609357174

    Article  CAS  Google Scholar 

  • Okoro, H. K., Fatoki, O. S., Adekola, F. A., Ximba, B. J., & Snyman, R. G. (2012). A review of sequential extraction procedures for heavy metals speciation in soil and sediments. https://doi.org/10.4172/scientificreports.181

  • Patel, H., & Sreya, C. (2021). A brief review on effect of oxidative stress on various diseases including a lung diseases. International Journal of Dental and Clinical Study, 2(3), 01–07.

    Google Scholar 

  • Pérez-Gómez, J., Villafaina, S., Adsuar, J. C., Carlos-Vivas, J., Garcia-Gordillo, M. Á., & Collado-Mateo, D. (2020). Copenhagen adduction exercise to increase eccentric strength: A systematic review and meta-analysis. Applied Sciences (Switzerland), 10(8). https://doi.org/10.3390/APP10082863

  • Rajouriya, K., Rohra, H., & Taneja, A. (2020). Levels of fine particulate matter bound trace metals in air of glass industrial area; Firozabad. Pollution, 6(3), 555–568. https://doi.org/10.22059/POLL.2020.294483.728

  • Rybarczyk, Y., & Zalakeviciute, R. (2018). Machine learning approaches for outdoor air quality modelling: A systematic review. Applied Sciences (Switzerland), 8(12). https://doi.org/10.3390/app8122570

  • Sadovska. (2020). Health risk assessment of heavy metals in seafood. Journal of Environmental Protection and Ecology, 21(2), 490–497. https://doi.org/10.5281/ZENODO.1058689

    Article  Google Scholar 

  • Sah, D., Verma, P. K., Kandikonda, M. K., & Lakhani, A. (2019). Chemical fractionation, bioavailability, and health risks of heavy metals in fine particulate matter at a site in the Indo-Gangetic Plain, India. Environmental Science and Pollution Research, 26(19), 19749–19762. https://doi.org/10.1007/S11356-019-05144-8/FIGURES/5

    Article  CAS  Google Scholar 

  • Sah, D., Verma, P. K., Kumari, K. M., & Lakhani, A. (2017). Chemical partitioning of fine particle-bound As, Cd, Cr, Ni Co, Pb and assessment of associated cancer risk due to inhalation, ingestion and dermal exposure. Inhalation Toxicology, 29(11), 483–493. https://doi.org/10.1080/08958378.2017.1406563

    Article  CAS  Google Scholar 

  • Sah, D., Verma, P. K., Kumari, K. M., & Lakhani, A. (2019a). Chemical fractionation of heavy metals in fine particulate matter and their health risk assessment through inhalation exposure pathway. Environmental Geochemistry and Health, 41(3), 1445–1458. https://doi.org/10.1007/s10653-018-0223-8

    Article  CAS  Google Scholar 

  • Sah, D., Verma, P., Kumari, K. M., & Lakhani, A. (2019b). Chemical fractionation, bioavailability, and health risks of heavy metals in fine particulate matter at a site in the Indo-Gangetic Plain. India. Environmental Science and Pollution Research, 26(19), 19749–19762. https://doi.org/10.1007/s11356-019-05144-8

    Article  CAS  Google Scholar 

  • Satsangi, P. G., Yadav, S., Pipal, A. S., & Kumbhar, N. (2014). Characteristics of trace metals in fine (PM2.5) and inhalable (PM10) particles and its health risk assessment along with in-silico approach in indoor environment of India. Atmospheric Environment, 92, 384–393. https://doi.org/10.1016/J.ATMOSENV.2014.04.047

    Article  CAS  Google Scholar 

  • Schleicher, N. J., Norra, S., Chai, F., Chen, Y., Wang, S., Cen, K., Yu, Y., & Stüben, D. (2011). Temporal variability of trace metal mobility of urban particulate matter from Beijing - A contribution to health impact assessments of aerosols. Atmospheric Environment, 45(39), 7248–7265. https://doi.org/10.1016/j.atmosenv.2011.08.067

    Article  CAS  Google Scholar 

  • Shokravi, H., Shokravi, H., Bakhary, N., Heidarrezaei, M., Koloor, S. S. R., & Petrů, M. (2020). Application of the subspace-based methods in health monitoring of civil structures: A systematic review and meta-analysis. Applied Sciences (Switzerland), 10(10). https://doi.org/10.3390/app10103607

  • Smichowski, P., Polla, G., & Gómez, D. (2005). Metal fractionation of atmospheric aerosols via sequential chemical extraction: A review. Analytical and Bioanalytical Chemistry, 381(2), 302–316. https://doi.org/10.1007/s00216-004-2849-x

    Article  CAS  Google Scholar 

  • State of Global Air, S. (2019). State of Global Air. 2019.

  • Sun, Y., Hu, X., Wu, J., Lian, H., & Chen, Y. (2014). Fractionation and health risks of atmospheric particle-bound As and heavy metals in summer and winter. Science of the Total Environment, 493, 487–494. https://doi.org/10.1016/j.scitotenv.2014.06.017

    Article  CAS  Google Scholar 

  • Świetlik, R., & Trojanowska, M. (2022). Chemical fractionation in environmental studies of potentially toxic particulate-bound elements in urban air: A critical review. Toxics, 10(3). https://doi.org/10.3390/toxics10030124

  • Tahri, M., Benchrif, A., Bounakhla, M., Benyaich, F., & Noack, Y. (2017). Seasonal variation and risk assessment of PM2.5 and PM2.5-10 in the ambient air of Kenitra, Morocco. Environmental Science Processes and Impacts, 19(11), 1427–1436. https://doi.org/10.1039/c7em00286f

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851. https://doi.org/10.1021/ac50043a017

    Article  CAS  Google Scholar 

  • Thangavel, P., Park, D., & Lee, Y. C. (2022). Recent insights into particulate matter (PM2.5)-mediated toxicity in humans: An overview. International Journal of Environmental Research and Public Health, 19(12), 7511. https://doi.org/10.3390/IJERPH19127511

    Article  CAS  Google Scholar 

  • Tubis, A., Werbińska-Wojciechowska, S., & Wroblewski, A. (2020). Risk assessment methods in mining industry-A systematic review. Applied Sciences (Switzerland), 10(15). https://doi.org/10.3390/app10155172

  • US EPA. (1989). Risk-assessment guidance for Superfund. Volume 1. Human Health Evaluation Manual. Part A. Interim report (Final) (Technical Report) | OSTI.GOV. https://doi.org/10.2172/70818

  • US EPA. (2009). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). Office of Superfund Remediation and Technology Innovation Environmental Protection Agency, I(January), 1–68.

    Google Scholar 

  • USEPA. (2014). Recommended Default Exposure Factors. Risk Assessment Information System (RAIS), 1–3.

  • USEPA. (2022). Regional Screening Levels (RSLs) - Generic Tables | US EPA. https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables

  • Vithanage, M., Bandara, P. C., Novo, L. A. B., Kumar, A., Ambade, B., Naveendrakumar, G., Ranagalage, M., & Magana-Arachchi, D. N. (2022). Deposition of trace metals associated with atmospheric particulate matter: Environmental fate and health risk assessment. Chemosphere. https://doi.org/10.1016/j.chemosphere.2022.135051

    Article  Google Scholar 

  • Vodyanitskii, Y., & Vlasov, D. (2021). Integrated assessment of affinity to chemical fractions and environmental pollution with heavy metals: A new approach based on sequential extraction results. International Journal of Environmental Research and Public Health, 18(16), 8458. https://doi.org/10.3390/IJERPH18168458/S1

    Article  CAS  Google Scholar 

  • Vodyanitskii, Y., Vlasov, D., Núñez, P., Teresa, M., & Silva, B. (2021). Integrated assessment of affinity to chemical fractions and environmental pollution with heavy metals: a new approach based on sequential extraction results. Mdpi.com. https://doi.org/10.3390/ijerph18168458

    Article  Google Scholar 

  • Wan Mahiyuddin, W. R., Ismail, R., Mohammad Sham, N., Ahmad, N. I., & Nik Hassan, N. M. N. (2023). Cardiovascular and Respiratory Health Effects of Fine Particulate Matters (PM2.5): A Review on Time Series Studies. Atmosphere, 14(5). https://doi.org/10.3390/atmos14050856

  • Wang, K., Wang, W., Li, L., Li, J., Wei, L., Chi, W., Hong, L., Zhao, Q., & Jiang, J. (2020). Seasonal concentration distribution of PM1.0 and PM2.5 and a risk assessment of bound trace metals in Harbin, China: Effect of the species distribution of heavy metals and heat supply. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-65187-7

  • Wenzel, W. W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., & Adriano, D. C. (2001). Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta, 436(2), 309–323. https://doi.org/10.1016/S0003-2670(01)00924-2

    Article  CAS  Google Scholar 

  • Wijaya, A. R., Khoerunnisa, F., Armid, A., & Lusiana, R. A. (2022). The best-modified BCR and Tessier with microwave-assisted methods for leaching of Cu/Zn and their δ 65Cu/δ 66Zn for tracing sources in marine sediment fraction. Environmental Technology & Innovation, 28, 102663. https://doi.org/10.1016/J.ETI.2022.102663

    Article  CAS  Google Scholar 

  • World Health Organization. (2004). World Health Report 2003. In BMJ (Vol. 328, Issue 7430). https://doi.org/10.1136/bmj.328.7430.6

  • Wu, T., Liu, P., He, X., Xu, H., & Shen, Z. (2021). Bioavailability of heavy metals bounded to PM2.5 in Xi’an, China: seasonal variation and health risk assessment. Environmental Science and Pollution Research, 28(27), 35844–35853. https://doi.org/10.1007/s11356-021-13198-w

    Article  CAS  Google Scholar 

  • Xie, J. J., Yuan, C. G., Xie, J., Niu, X. D., Zhang, X. R., Zhang, K. G., Xu, P. Y., Ma, X. Y., & Lv, X. B. (2020). Comparison of arsenic fractions and health risks in PM2.5 before and after coal-gas replacement. Environmental Pollution. https://doi.org/10.1016/j.envpol.2019.113881

    Article  Google Scholar 

  • Xie, J. J., Yuan, C. G., Xie, J., Shen, Y. W., He, K. Q., & Zhang, K. G. (2019). Speciation and bioaccessibility of heavy metals in PM2.5 in Baoding city, China. Environmental Pollution, 252, 336–343. https://doi.org/10.1016/J.ENVPOL.2019.04.106

    Article  CAS  Google Scholar 

  • Yadav, S., & Satsangi, P. G. (2013). Characterization of particulate matter and its related metal toxicity in an urban location in South West India. Environmental Monitoring and Assessment, 185(9), 7365–7379. https://doi.org/10.1007/s10661-013-3106-6

    Article  CAS  Google Scholar 

  • Yuan, X., Huang, H., Zeng, G., Li, H., Wang, J., Zhou, C., Zhu, H., Pei, X., Liu, Z., & Liu, Z. (2011). Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge. Bioresource Technology, 102(5), 4104–4110. https://doi.org/10.1016/j.biortech.2010.12.055

    Article  CAS  Google Scholar 

  • Zajusz-Zubek, E., Kaczmarek, K., & Mainka, A. (2015). Trace elements speciation of submicron particulate matter (PM1) collected in the surroundings of power plants. International Journal of Environmental Research and Public Health, 12(10), 13085–13103. https://doi.org/10.3390/ijerph121013085

    Article  CAS  Google Scholar 

  • Zajusz-Zubek, E., Mainka, A., & Kaczmarek, K. (2023). Dendrograms, heat maps and principal component analysis–the practical use of statistical methods for source apportionment of trace elements in PM10. Journal of Environmental Science and Health - Part A Toxic/hazardous Substances and Environmental Engineering, 58(3), 163–170. https://doi.org/10.1080/10934529.2019.1670026

    Article  CAS  Google Scholar 

  • Zajusz-Zubek, E., Radko, T., & Mainka, A. (2017). Fractionation of trace elements and human health risk of submicron particulate matter (PM1) collected in the surroundings of coking plants. Environmental Monitoring and Assessment, 189(8), 1–19. https://doi.org/10.1007/S10661-017-6117-X/TABLES/4

    Article  CAS  Google Scholar 

  • Zatka, V. J., Stuart Warner, J., & David, M. (1992). Chemical speciation of nickel in airborne dusts: analytical method and results of an interlaboratory test program. Environmental Science and Technology, 26(1), 138–144. https://doi.org/10.1021/es00025a015

    Article  CAS  Google Scholar 

  • Zhang, G., Bai, J., Xiao, R., Zhao, Q., Jia, J., Cui, B., Liu, X., & Krystek, P. P. (2017). Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River Estuary, China. Elsevier, 184, 278–288. https://doi.org/10.1016/j.chemosphere.2017.05.155

    Article  CAS  Google Scholar 

  • Zhang, X., Zhang, K., Lv, W., Liu, B., Aikawa, M., & Wang, J. (2019). Characteristics and risk assessments of heavy metals in fine and coarse particles in an industrial area of central China. Ecotoxicology and Environmental Safety, 179, 1–8. https://doi.org/10.1016/J.ECOENV.2019.04.024

    Article  CAS  Google Scholar 

  • Zhang, Y., et al. (2021). Contamination characteristics, source analysis and health risk assessment of heavy metals in the soil in Shi River Basin in China based on high density sampling. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2021.112926

    Article  Google Scholar 

  • Zhao, Z., Jing, Y., Luo, X. S., Li, H., & Tang, M. (2021). Overview and research progresses in chemical speciation and in vitro bioaccessibility analyses of airborne particulate trace metals. Current Pollution Reports, 7(4), 540–548. https://doi.org/10.1007/s40726-021-00200-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Director of Dayalbagh Educational Institute and the Head of the Department of Chemistry for providing essential assistance and research facilities for this endeavor.

Funding

This research was done as part of the Department of Science and Technology-Science and Engineering Research Board Core Research Award of Project No. EMR/2017/002648 (DST-SERB). The Department of Science and Technology-Fund for Improvement of S&T Infrastructure (SR/FST/CS-II/2017/38) is acknowledged by the authors for providing research facilities.

Author information

Authors and Affiliations

Authors

Contributions

Isha Goyal significantly contributed to the methodology, interpretation, and writing of the original draft preparation. Muskan Agarwal was active in screening the articles from various databases and validating the data. The editing and formatting of the manuscript have been done by Simran Bamola and Gunjan Goswami. Conceptualization, data curation, funding acquisition, manuscript review, and editing were all handled by Anita Lakhani. The final manuscript was reviewed and approved by all authors.

Corresponding author

Correspondence to Anita Lakhani.

Ethics declarations

Ethics approval

This is an observational study. Thus, no ethical approval is required.

Consent to participate

Not available.

Consent to publish

All authors have read, understood, and complied the manuscript for possible publication.

Competing interests

There are no relevant financial or non-financial interests to disclose for the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, I., Agarwal, M., Bamola, S. et al. The role of chemical fractionation in risk assessment of toxic metals: a review. Environ Monit Assess 195, 1098 (2023). https://doi.org/10.1007/s10661-023-11728-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11728-2

Keywords

Navigation