Skip to main content
Log in

Chemical fractionation of heavy metals in fine particulate matter and their health risk assessment through inhalation exposure pathway

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Samples of PM2.5 were collected from an urban area close to a national highway in Agra, India and sequentially extracted into four different fractions: water soluble (F1), reducible (F2), oxidizable (F3) and residual fraction (F4) for chemical fractionation of arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), nickel (Ni) and lead (Pb). The metals were analyzed by inductively coupled plasma optical emission spectroscopy in each fraction. The average mass concentration of PM2.5 was 93 ± 24 μg m−3.The total concentrations of Cr, Pb, Ni, Co, As and Cd in fine particle were 192 ± 54, 128 ± 25, 108 ± 34, 36 ± 6, 35 ± 5 and 8 ± 2 ng m−3, respectively. Results indicated that Cd and Co had the most bioavailability indexes. Risk Assessment Code and contamination factors were calculated to assess the environmental risk. The present study evaluated the potential Pb hazard to young children using the Integrated Exposure Uptake Biokinetic Model. From the model, the probability density of PbB (blood lead level) revealed that at the prevailing atmospheric concentration, 0.302 children are expected to have PbB concentrations exceeding 10 μg dL−1 and an estimated IQ (intelligence quotient) loss of 1.8 points. The predicted blood Pb levels belong to Group 3 (PbB < 5 μg dL−1). Based on the bioavailable fractions, carcinogenic and non-carcinogenic risks via inhalation exposure were assessed for infants, toddlers, children, males and females. The hazard index for potential toxic metals was 2.50, which was higher than the safe limit (1). However, the combined carcinogenic risk for infants, toddlers, children, males and females was marginally higher than the precautionary criterion (10−6).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahamed, M., Verma, S., Kumar, A., & Siddiqui, M. K. (2010). Blood lead levels in children of Lucknow, India. Environmental Toxicology: An International Journal, 25(1), 48–54.

    CAS  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry). (2007). Toxicological profile for lead. Atlanta: Agency for Toxic Substances & Disease Registry.

    Google Scholar 

  • Betha, R., Behera, S. N., & Balasubramanian, R. (2014). 2013 Southeast Asian smoke haze: fractionation of particulate-bound elements and associated health risk. Environmental Science and Technology, 48, 4327–4335.

    Article  CAS  Google Scholar 

  • Bierkens, J., Smolders, R., Van Holderbeke, M., & Cornelis, C. (2011). Predicting blood lead levels from current and past environmental data in Europe. Science of the Total Environment, 409(23), 5101–5110.

    Article  CAS  Google Scholar 

  • Brauner, E. V., Mortensen, J., Moller, P., Bernard, A., Vinzents, P., & Wahlin, P. (2009). Effects of ambient air particulate exposure on blood–gas barrier permeability and lung function. Inhalation Toxicology, 21(1), 38–47.

    Article  Google Scholar 

  • Canepari, S., Astolfi, M. L., Moretti, S., & Curini, R. (2010). Comparison of extracting solutions for elemental fractionation in airborne particulate matter. Talanta, 82, 834–844.

    Article  CAS  Google Scholar 

  • Cempel, M., & Nikel, G. (2006). Nickel: A review of its sources and environmental toxicology. Polish Journal of Environmental Studies, 15(3), 375–382.

    CAS  Google Scholar 

  • Chen, A., Dietrich, K. N., Ware, J. H., Radcliffe, J., & Rogan, W. J. (2005). IQ and blood lead from 2 to 7 years of age: Are the effects in older children the residual of high blood lead concentrations in 2-year-olds? Environmental Health Perspectives, 113(5), 597.

    Article  CAS  Google Scholar 

  • Das, R., Khezri, B., Srivastava, B., Datta, S., Sikdar, P. K., Webster, R. D., et al. (2015). Trace element composition of PM2.5 and PM10 from Kolkata—A heavily polluted Indian metropolis. Atmospheric Pollution Research, 6(5), 742–750.

    Article  CAS  Google Scholar 

  • de la Campa, A. S., De La Rosa, J., González-Castanedo, Y., Fernández-Camacho, R., Alastuey, A., Querol, X., et al. (2011). Levels and chemical composition of PM in a city near a large Cu-smelter in Spain. Journal of Environmental Monitoring, 13(5), 1276–1287.

    Article  Google Scholar 

  • Denys, S., Caboche, J., Tack, K., Rychen, G., Wragg, J., Cave, M., et al. (2012). Vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Environmental Science and Technology, 46, 6252–6260.

    Article  CAS  Google Scholar 

  • Dong, G. H., Chen, T., Liu, M. M., Wang, D., Ma, Y. N., Ren, W. H., et al. (2011). Gender differences and effect of air pollution on asthma in children with and without allergic predisposition: Northeast Chinese Children Health Study. Air Pollution and Asthma in Children, 6(7), 22470.

    Google Scholar 

  • Espinosa, A. J. F., Rodríguez, M. T., de la Rosa, F. J. B., & Sánchez, J. C. J. (2002). A chemical speciation of trace metals for fine urban particles. Atmospheric Environment, 36(5), 773–780.

    Article  Google Scholar 

  • Feng, X. D., Dang, Z., Huang, W. L., & Yang, C. (2009). Chemical speciation of fine particle bound trace metals. International Journal of Environmental Science and Technology, 6(3), 337–346.

    Article  CAS  Google Scholar 

  • Fuentes, A., Llorens, M., Saez, J., Aguilar, Ma I, Ortu, J. F., & Meseguer, V. F. (2008). Comparative study of six different sludges by sequential speciation of heavy metals. Bioresource Technology, 99, 517–525.

    Article  CAS  Google Scholar 

  • Gibb, H. J., Lees, P. S. J., Wang, J., & Grace O’Leary, K. (2015). Extended followup of a cohort of chromium production workers. American Journal of Industrial Medicine, 58(8), 905–913.

    Article  CAS  Google Scholar 

  • Gope, M., Masto, R. E., George, J., Hoque, R. R., & Balachandran, S. (2017). Bioavailability and health risk of some potentially toxic elements (Cd, Cu, Pb and Zn) in street dust of Asansol, India. Ecotoxicology and Environmental Safety, 138, 231–241.

    Article  CAS  Google Scholar 

  • Hu, X., Zhang, Y., Ding, Z. H., Wang, T. J., Lian, H. Z., Sun, Y. Y., et al. (2012). Bioaccessibility and health risk of arsenic and heavy metals (Cd Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing. China Atmospheric Environment, 57, 146–152.

    Article  CAS  Google Scholar 

  • Huang, L., Yu, C. H., Hopke, P. K., Lioy, P. J., Buckley, B. T., Shin, J. Y., et al. (2014). Measurement of soluble and total hexavalent chromium in the ambient airborne particles in New Jersey. Aerosol and Air Quality Research, 14, 1939–1949.

    Article  CAS  Google Scholar 

  • IARC (International Agency for research on cancer). (2011). Agents classified by the IARC monographs, vol. 1–102.

  • IMD (Indian Meteorological Department). (2009). Climate of Uttar Pradesh. New Delhi: Government of India Press.

    Google Scholar 

  • Izhar, S., Goel, A., Chakraborty, A., & Gupta, T. (2016). Annual trends in occurrence of submicron particles in ambient air and health risk posed by particle bound metals. Chemosphere, 146, 582–590.

    Article  CAS  Google Scholar 

  • Jain, N. B., & Hu, H. (2006). Childhood correlates of blood lead levels in Mumbai and Delhi. Environmental Health Perspectives, 114(3), 466.

    Article  CAS  Google Scholar 

  • Jamali, M. K., Kazi, T. G., Afridi, H. I., Arain, M. B., Jalbani, N., & Memon, A. R. (2007). Speciation of heavy metals in untreated domestic wastewater sludge by time saving BCR sequential extraction method. Journal of Environmental Science and Health Part A, 42(5), 649–659.

    Article  CAS  Google Scholar 

  • Jan, R., Roy, R., Yadav, S., & Satsangi, P. G. (2018). Chemical fractionation and health risk assessment of particulate matter-bound metals in Pune, India. Environmental geochemistry and health, 40(1), 255–270.

    Article  CAS  Google Scholar 

  • JECFA. (2011). Safety evaluation of certain food additives and contaminants. Joint FAO/WHO Expert Committee on Food Additives.

  • Jusko, T. A., Henderson, C. R., Jr., Lanphear, B. P., Cory-Slechta, D. A., Parsons, P. J., & Canfield, R. L. (2008). Blood lead concentrations < 10 μg dL−1 and child intelligence at 6 years of age. Environmental Health Perspectives, 116(2), 243.

    Article  CAS  Google Scholar 

  • Kalra, V., Chitralekha, K. T., Dua, T., Pandey, R. M., & Gupta, Y. (2003). Blood lead levels and risk factors for lead toxicity in children from schools and an urban slum in Delhi. Journal of Tropical Pediatrics, 49(2), 121–123.

    Article  Google Scholar 

  • Khan, M. A., Khan, S., Khan, A., & Alam, M. (2017). Soil contamination with cadmium, consequences and remediation using organic amendments. Science of the Total Environment, 601, 1591–1605.

    Article  Google Scholar 

  • Khanna, I., Khare, M., & Gargava, P. (2015). Health risks associated with heavy metals in fine particulate matter: a case study in Delhi city, India. Journal of Geoscience and Environment Protection, 3(02), 72.

    Article  Google Scholar 

  • Kulshrestha, A., Massey, D. D., Masih, J., & Taneja, A. (2014). Source characterization of trace elements in indoor environments at urban, rural and roadside sites in a semi-arid region of India. Aerosol and Air Quality Research, 14, 1738–1751.

    Article  CAS  Google Scholar 

  • Kumar, P., Morawska, L., Birmili, W., Paasonen, P., Hu, M., Kulmala, M., et al. (2014). Ultrafine particles in cities. Environment International, 66, 1–10.

    Article  CAS  Google Scholar 

  • Kurt-Karakus, P. B. (2012). Determination of heavy metals in indoor dust from Istanbul, Turkey: Estimation of the health risk. Environment International, 50, 47–55.

    Article  CAS  Google Scholar 

  • Lanphear, B. P., Dietrich, K., Auinger, P., & Cox, C. (2000). Cognitive deficits associated with blood lead concentrations < 10 μg dL−1 in US children and adolescents. Public Health Reports, 115(6), 521.

    Article  CAS  Google Scholar 

  • Li, H. M., Qian, X., & Wang, Q. G. (2013). Heavy metals in atmospheric particulate matter: A comprehensive understanding is needed for monitoring and risk mitigation. Environmental Science and Technology, 47, 13210–13211.

    Article  CAS  Google Scholar 

  • Li, H., Wang, Q. G., Shao, M., Wang, J., Wang, C., Sun, Y., et al. (2016). Fractionation of airborne particulate-bound elements in haze-fog episode and associated health risks in a megacity of southeast China. Environmental Pollution, 208, 655–662.

    Article  CAS  Google Scholar 

  • Li, H. M., Wang, J. H., Wang, Q. G., Qian, X., Qian, Y., Yang, M., et al. (2015). Chemical fractionation of arsenic and heavy metals in fine particle matter and its implications for risk assessment: A case study in Nanjing, China. Atmospheric Environment, 103, 339–346.

    Article  CAS  Google Scholar 

  • Li, H., Wu, H., Wang, Q. G., Yang, M., Li, F., Sun, Y., et al. (2017). Chemical partitioning of fine particle-bound metals on haze-fog and non-haze–fog days in Nanjing, China and its contribution to human health risks. Atmospheric Research, 183, 142–150.

    Article  CAS  Google Scholar 

  • Liang, S., Guan, D. X., Li, J., Zhou, C. Y., Luo, J., & Ma, L. Q. (2016). Effect of aging on bioaccessibility of arsenic and lead in soils. Chemosphere, 151, 94–100.

    Article  CAS  Google Scholar 

  • Marschner, B., Welge, P., Hack, A., Wittsiepe, J., & Wilhelm, M. (2006). Comparison of soil Pb in vitro bioaccessibility and in vivo bioavailability with Pb pools from a sequential soil extraction. Environmental Science and Technology, 40, 2812–2818.

    Article  CAS  Google Scholar 

  • Miller, J. N., & Miller, J. C. (2010). Statistics and chemometrics for analytical chemistry (6th ed.). England: Pearson Education Limited. (Chapter 1).

    Google Scholar 

  • Mukhtar, A., & Limbeck, A. (2013). Recent developments in assessment of bio-accessible trace metal fractions in airborne particulate matter: A review. Analytica Chimica Acta, 774, 11–25.

    Article  CAS  Google Scholar 

  • Ng, J. C., Juhasz, A., Smith, E., & Naidu, R. (2015). Assessing the bioavailability and bioaccessibility of metals and metalloids. Environmental Science and Pollution Research, 22(12), 8802–8825.

    Article  Google Scholar 

  • Ostro, B., Malig, B., Broadwin, R., Basu, R., Gold, E. B., Bromberger, J. T., et al. (2014). Chronic PM2.5 exposure and inflammation: Determining sensitive subgroups in mid-life women. Environmental Research, 132, 168–175.

    Article  CAS  Google Scholar 

  • Pipal, A. S., Jan, R., Satsangi, P. G., Tiwari, S., & Taneja, A. (2014). Study of surface morphology, elemental composition and origin of atmospheric aerosols (PM2.5 and PM10) over Agra, India. Aerosol and Air Quality Research, 14(6), 1685–1700.

    Article  CAS  Google Scholar 

  • Pizzol, M., Thomsen, M., & Andersen, M. S. (2010). Long-term human exposure to lead from different media and intake pathways. Science of the Total Environment, 408(22), 5478–5488.

    Article  CAS  Google Scholar 

  • Pratinidhi, S. A., Patil, A. J., Behera, M., Patil, M., Ghadage, D. P., & Pratinidhi, A. K. (2014). Effects of blood lead level on biochemical and hematological parameters in children with neurological diseases of Western Maharashtra, India. Journal of Basic and Clinical Physiology and Pharmacology, 25(2), 229–233.

    Article  CAS  Google Scholar 

  • Ram, K., Singh, S., Sarin, M. M., Srivastava, A. K., & Tripathi, S. N. (2016). Variability in aerosol optical properties over an urban site, Kanpur, in the Indo-Gangetic Plain: A case study of haze and dust events. Atmospheric Research, 174–175, 52–61.

    Article  Google Scholar 

  • Roy, A., Bellinger, D., Hu, H., Schwartz, J., Ettinger, A. S., Wright, R. O., et al. (2009). Lead exposure and behavior among young children in Chennai, India. Environmental Health Perspectives, 117(10), 1607.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science and Technology, 30, 422–430.

    Article  CAS  Google Scholar 

  • Schilderman, P., Moonen, E., Kempkers, P., & Kleinjans, J. (1997). Bioavailability of soiladsorbed cadmium in orally exposed male rats. Environmental Health Perspectives, 105, 234–238.

    Article  CAS  Google Scholar 

  • Schleicher, N. J., Norra, S., Chai, F. H., Chen, Y. Z., Wang, S. L., Cen, K., et al. (2011). Temporal variability of trace metal mobility of urban particulate matter from Beijing—A contribution to health impact assessments of aerosols. Atmospheric Environment, 45, 7248–7265.

    Article  CAS  Google Scholar 

  • Schroder, J. L., Basta, N. T., Si, J., Casteel, S. W., Evans, T., & Payton, M. (2003). In vitro gastrointestinal method to estimate relative bioavailable cadmium in contaminated soil. Environmental Science and Technology, 37, 1365–1370.

    Article  CAS  Google Scholar 

  • Smith, A. H., Marshall, G., Yuan, Y., Ferreccio, C., Liaw, J., von Ehrenstein, O., et al. (2006). Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environmental Health Perspectives, 114(8), 1293–1296.

    Article  CAS  Google Scholar 

  • Song, S., Wu, Y., Jiang, J., Yang, L., Cheng, Y., & Hao, J. (2012). Chemical characteristics of size-resolved PM2.5 at a roadside environment in Beijing, China. Environmental Pollution, 161, 215–221.

    Article  CAS  Google Scholar 

  • Sood, A., Cui, X., Qualls, C., Beckett, W. S., Gross, M. D., Steffes, M. W., et al. (2008). Association between asthma and serum adiponectin concentration in women. Thorax, 63, 877–882.

    Article  CAS  Google Scholar 

  • Sun, Y., Hu, X., Wu, J., Lian, H., & Chen, Y. (2014). Fractionation and health risks of atmospheric particle-bound As and heavy metals in summer and winter. Science of the Total Environment, 493, 487–494.

    Article  CAS  Google Scholar 

  • Taner, S., Pekey, B., & Pekey, H. (2013). Fine particulate matter in the indoor air of barbeque restaurants: Elemental compositions, sources and health risks. Science of the Total Environment, 454, 79–87.

    Article  Google Scholar 

  • Tang, W., Xia, Q., Shan, B., & Ng, J. C. (2018). Relationship of bioaccessibility and fractionation of cadmium in long-term spiked soils for health risk assessment based on four in vitro gastrointestinal simulation models. Science of the Total Environment, 631, 1582–1589.

    Article  Google Scholar 

  • United States Environment Protection Agency (USEPA). (1998). Integrated risk information system (IRIS) on arsenic. National Center for Environmental Assessment, Office of Research and Development, Washington, DC.

  • United States Environment Protection Agency (USEPA). (2009). Risk assessment guidance for superfund (RAGS), volume I human health evaluation manual (part F, supplemental guidance for inhalation risk assessment). EPA-540-R-070-002, OSWER 9285, 7–82. http://www.epa.gov/swerrims/riskassessment/ragsf/index.htm.

  • United States Environment Protection Agency (USEPA). (2010). Integrated exposure uptake biokinetic model for lead in children. Washington: U.S. EPA.

    Google Scholar 

  • United States Environment Protection Agency (USEPA). (2011). Risk assessment guidance for superfund. In: Part A: Human Health Evaluation Manual; Part E, Supplemental Guidance for Dermal Risk Assessment; Part F, Supplemental Guidance for Inhalation Risk Assessment, vol. I. http://www.epa.gov/oswer/riskassessment/human_health_exposure.htm.

  • United States Environment Protection Agency (USEPA). (2013). User’s guide/technical background document for US EPA Region 9’s RSL (regional screening levels) tables. http://www.epa.gov/region9/superfund/prg/.

  • Varshney, P., Saini, R., & Taneja, A. (2016). Trace element concentration in fine particulate matter (PM2.5) and their bioavailability in different microenvironments in Agra, India: A case study. Environmental Geochemistry and Health, 38(2), 593–605.

    Article  CAS  Google Scholar 

  • Verma, P. K., Sah, D., Kumari, K. M., & Lakhani, A. (2017). Atmospheric concentrations and gas-particle partitioning of polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs at Indo-Gangetic sites. Environmental Science: Processes & Impacts, 19(8), 1051–1060.

    CAS  Google Scholar 

  • Volckens, J., & Leith, D. (2003). Partitioning theory for respiratory deposition of semivolatile aerosols. Annals of Occupational Hygiene, 47(2), 157–164.

    CAS  Google Scholar 

  • WHO (World Health Organization). (2000). World Health Organization. Guidelines for Air Quality. Geneva.

  • Yadav, S., & Satsangi, P. G. (2013). Characterization of particulate matter and its related metal toxicity in an urban location in South West India. Environmental Monitoring and Assessment, 185(9), 7365–7379.

    Article  CAS  Google Scholar 

  • Zhai, Y. B., Liu, X. T., Chen, H. M., Xu, B. B., Zhu, L., Li, C. T., et al. (2014). Source identification and potential ecological risk assessment of heavy metals in PM2.5 from Changsha. Science of the Total Environment, 493, 109–115.

    Article  CAS  Google Scholar 

  • Zhang, F., Wang, Z. W., Cheng, H. R., Lv, X. P., Gong, W., Wang, X. M., et al. (2015). Seasonal variations and chemical characteristics of PM2.5 inWuhan, central China. Science of the Total Environment, 518, 97–105.

    Google Scholar 

  • Zheng, J., Huynh, T., Gasparon, M., Ng, J., & Noller, B. (2013). Human health risk assessment of lead from mining activities at semi-arid locations in the context of total lead exposure. Environmental Science and Pollution Research, 20(12), 8404–8416.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by UGC-BSR (No. ETP/UGC Res. Fellowship/3089) and Department of Science and Technology (Project No. SB/S4/AS-150/2014). We are grateful to Dr. Tarun Gupta and Mr. Amit Kumar Singh, IIT Kanpur for their help in analyzing samples by ICP-OES. We are thankful to Director and Head, Department of Chemistry, Dayalbagh Educational Institute, Agra, for providing us the necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Lakhani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sah, D., Verma, P.K., Kumari, K.M. et al. Chemical fractionation of heavy metals in fine particulate matter and their health risk assessment through inhalation exposure pathway. Environ Geochem Health 41, 1445–1458 (2019). https://doi.org/10.1007/s10653-018-0223-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0223-8

Keywords

Navigation