Skip to main content

Advertisement

Log in

Assessment of the spatial–temporal distribution of groundwater recharge in data-scarce large-scale African river basin

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The systematic assessment of spatial and temporal distribution of groundwater recharge (GWR) is crucial for the sustainable management of the water resources systems, especially in large-scale river basins. This helps in identifying critical zones in which GWR largely varies and thus leads to negative consequences. However, such analyses might not be possible when the models require detailed hydro-climate and hydrogeological data in data-scarce regions. Hence, this calls for alternate suitable modeling approaches that are applicable with the limited data and, however, includes the detailed assessment of the spatial–temporal distribution of different water balance components especially the GWR component. This paper aimed at investigating the spatial and temporal distribution of the GWR at monthly, seasonal and annual scales using the WetSpass-M physically distributed hydrological model, which is not requiring the detailed catchment information. In addition, the study conducted the sensitivity analysis of model parameters to assess the significant variation of GWR. The large-scale river basins such as the Omo river basin, Ethiopia, were chosen to demonstrate the potential of the WetSpass-M model under limited data conditions. From the modeling results, it was found that the maximum average monthly GWR of 13.4 mm occurs in July. The estimated average seasonal GWR is 32.5 mm/yr and 47.6 mm/yr in the summer and winter seasons, respectively. Further, it was found that GWR is highly sensitive to the parameter such as average rainfall intensity factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

It will be shared upon the request.

References

  • Abdollahi, K., Bashir, I., Verbeiren, B., Harouna, M. R., Van Griensven, A., Huysmans, M., & Batelaan, O. (2017). A distributed monthly water balance model: formulation and application on black volta basin. Environmental Earth Sciences, 76, 198.

    Article  Google Scholar 

  • Aish, A. M., Batelaan, O., & De Smedt, F. (2010). Distributed recharge estimation for groundwater modeling using wetspass model, case study gaza strip, palestine. Arabian Journal for Science and Engineering, 35, 155.

    Google Scholar 

  • Ajjur, S., & Mogheir, Y. (2012). Effect of climate change on the groundwater resources (gaza strip case study). International Journal of Sustainable Energy and Environment, 1, 136–149.

    Google Scholar 

  • Armanuos, A. M., Negm, A., Yoshimura, C., & Valeriano, O. C. S. (2016). Application of wetspass model to estimate groundwater recharge variability in the nile delta aquifer. Arabian Journal of Geosciences, 9, 1–14.

    Article  Google Scholar 

  • Armbruster, V., & Leibundgut, C. (2001). Determination of spatially and temporally highly detailed groundwater recharge in porous aquifers by a svat model. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26, 607–611.

    Article  Google Scholar 

  • Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., et al. (2012). Swat: Model use, calibration, and validation. Transactions of the ASABE, 55, 1491–1508.

    Article  Google Scholar 

  • Ashaolu, E. D., Olorunfemi, J. F., Ifabiyi, I. P., Abdollahi, K., & Batelaan, O. (2020). Spatial and temporal recharge estimation of the basement complex in nigeria, west africa. Journal of Hydrology: Regional Studies, 27, 100658.

  • Asmerom, G. H. (2008). Groundwater contribution and recharge estimation in the upper blue nile flows, ethiopia. ITC.

  • Babama’aji, R. A. (2013). Impacts of precipitation, land use land cover and soil type on the water balance of Lake Chad Basin. University of Missouri-Kansas City.

  • Batelaan, O., & De Smedt, F. (2001). Wetspass: a flexible, gis based, distributed recharge methodology for regional groundwater modelling. IAHS PUBLICATION, (pp. 11–18).

  • Batelaan, O., & De Smedt, F. (2007). Gis-based recharge estimation by coupling surface-subsurface water balances. Journal of hydrology, 337, 337–355.

    Article  Google Scholar 

  • Batelaan, O., Wang, Z.-M., & De Smedt, F. (1996). An adaptive gis toolbox for hydrological modelling. IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences, 235, 3–10.

    Google Scholar 

  • Bredehoeft, J. D. (2002). The water budget myth revisited: why hydrogeologists model. Groundwater, 40, 340–345.

    Article  CAS  Google Scholar 

  • Chaemiso, S. E., Abebe, A., & Pingale, S. M. (2016). Assessment of the impact of climate change on surface hydrological processes using swat: a case study of omo-gibe river basin, ethiopia. Modeling Earth Systems and Environment, 2, 1–15.

    Article  Google Scholar 

  • Chaemiso, S. E., Kartha, S. A., & Pingale, S. M. (2021). Effect of land use/land cover changes on surface water availability in the omo-gibe basin, ethiopia. Hydrological Sciences Journal.

  • Dawson, C. W., Abrahart, R. J., & See, L. M. (2007). Hydrotest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environmental Modelling & Software, 22, 1034–1052.

    Article  Google Scholar 

  • Degefu, M. A., & Bewket, W. (2014). Variability and trends in rainfall amount and extreme event indices in the omo-ghibe river basin, ethiopia. Regional environmental change, 14, 799–810.

    Article  Google Scholar 

  • Fao/Iiasa/Isric/Isscas/Jrc (2012). Harmonized world soil database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria, .

  • Gebremeskel, G., & Kebede, A. (2017). Spatial estimation of long-term seasonal and annual groundwater resources: application of wetspass model in the werii watershed of the tekeze river basin, ethiopia. Physical Geography, 38, 338–359.

    Article  Google Scholar 

  • Gebreyohannes, T., De Smedt, F., Walraevens, K., Gebresilassie, S., Hussien, A., Hagos, M., et al. (2013). Application of a spatially distributed water balance model for assessing surface water and groundwater resources in the geba basin, tigray, ethiopia. Journal of Hydrology, 499, 110–123.

    Article  Google Scholar 

  • Gebru, T. A., & Tesfahunegn, G. B. (2019). Chloride mass balance for estimation of groundwater recharge in a semi-arid catchment of northern ethiopia. Hydrogeology Journal, 27, 363–378.

    Article  CAS  Google Scholar 

  • Gebru, T. A., & Tesfahunegn, G. B. (2020). Gis based water balance components estimation in northern ethiopia catchment. Soil and Tillage Research, 197, 104514.

  • Ghouili, N., Jarraya-Horriche, F., Hamzaoui-Azaza, F., Zaghrarni, M. F., Ribeiro, L., & Zammouri, M. (2021). Groundwater vulnerability mapping using the susceptibility index (si) method: Case study of takelsa aquifer, northeastern tunisia. Journal of African Earth Sciences, 173, 104035.

  • Jillo, A. Y., Demissie, S., Viglione, A., Asfaw, D., & Sivapalan, M. (2017). Characterization of regional variability of seasonal water balance within omo-ghibe river basin, ethiopia. Hydrological Sciences Journal, 62, 1200–1215.

    Article  Google Scholar 

  • Kahsay, G. H., Gebreyohannes, T., Gebremedhin, M. A., Gebrekirstos, A., Birhane, E., Gebrewahid, H., & Welegebriel, L. (2019). Spatial groundwater recharge estimation in raya basin, northern ethiopia: an approach using gis based water balance model. Sustainable Water Resources Management, 5, 961–975.

    Article  Google Scholar 

  • Leenaars, J., Kempen, B., van Oostrum, A., & Batjes, N. (2014). Africa soil profiles database: A compilation of georeferenced and standardised legacy soil profile data for sub-saharan africa. Arrouays et al. (eds.), 2014b, (pp. 51–57).

  • Manfreda, S., Fiorentino, M., & Iacobellis, V. (2005). Dream: a distributed model for runoff, evapotranspiration, and antecedent soil moisture simulation. Advances in Geosciences, 2, 31–39.

    Article  Google Scholar 

  • Martz, L. W., & Garbrecht, J. (1992). Numerical definition of drainage network and subcatchment areas from digital elevation models. Computers & Geosciences, 18, 747–761.

    Article  Google Scholar 

  • Melki, A., Abdollahi, K., Fatahi, R., & Abida, H. (2017). Groundwater recharge estimation under semi arid climate: Case of northern gafsa watershed, tunisia. Journal of African Earth Sciences, 132, 37–46.

    Article  Google Scholar 

  • Meresa, E., & Taye, G. (2019). Estimation of groundwater recharge using gis-based wetspass model for birki watershed, the eastern zone of tigray, northern ethiopia. Sustainable Water Resources Management, 5, 1555–1566.

    Article  Google Scholar 

  • Mohammed, A. K. (2013). The effect of climate change on water resources potential of omo gibe basin, ethiopia. München: Technische Universität München.

    Google Scholar 

  • Molla, D. D., Tegaye, T. A., & Fletcher, C. G. (2019). Simulated surface and shallow groundwater resources in the abaya-chamo lake basin, ethiopia using a spatially-distributed water balance model. Journal of Hydrology: Regional Studies, 24, 100615.

  • Muthuwatta, L. P., Bos, M., Rientjes, T., et al. (2010). Assessment of water availability and consumption in the karkheh river basin, iran using remote sensing and geo-statistics. Water Resources Management, 24, 459–484.

    Article  Google Scholar 

  • Nannawo, A. S., Lohani, T. K., & Eshete, A. A. (2021). Exemplifying the effects using wetspass model depicting the landscape modifications on long-term surface and subsurface hydrological water balance in bilate basin, ethiopia. Advances in Civil Engineering, 2021.

  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part i a discussion of principles. Journal of hydrology, 10, 282–290.

    Article  Google Scholar 

  • Nedaw, D. (2010). Water balance and groundwater quality of koraro area, tigray, northern ethiopia. Momona Ethiopian Journal of Science, 2, 110–127.

    Article  Google Scholar 

  • Negese, A. (2021). Impacts of land use and land cover change on soil erosion and hydrological responses in ethiopia. Applied and Environmental Soil Science, 2021.

  • Nesru, M., Nagaraj, M. K., & Shetty, A. (2020). Assessment of consumption and availability of water in the upper omo-gibe basin, ethiopia. Arabian Journal of Geosciences, 13, 1–11.

    Article  Google Scholar 

  • Nistor, M. M., Rahardjo, H., Satyanaga, A., Hao, K. Z., Xiaosheng, Q., & Sham, A. W. L. (2020). Investigation of groundwater table distribution using borehole piezometer data interpolation: Case study of singapore. Engineering Geology, 271, 105590.

  • Pistocchi, A., Bouraoui, F., & Bittelli, M. (2008). A simplified parameterization of the monthly topsoil water budget. Water Resources Research, 44.

  • Rijsberman, F. R. (2006). Water scarcity: fact or fiction? Agricultural water management, 80, 5–22.

    Article  Google Scholar 

  • Rwanga, S. S. (2013). A review on groundwater recharge estimation using wetspass model. In International conference on civil and environmental engineering,(CEE), Johannesburg, South Africa.

  • Shamseldin, A. Y. (1997). Application of a neural network technique to rainfall-runoff modelling. Journal of hydrology, 199, 272–294.

    Article  Google Scholar 

  • Sophocleous, M. (2000). From safe yield to sustainable development of water resources the kansas experience. Journal of hydrology, 235, 27–43.

    Article  Google Scholar 

  • Sutanto, S., Wenninger, J., Coenders-Gerrits, A., & Uhlenbrook, S. (2012). Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a hydrus-1d model. Hydrology and Earth System Sciences, 16, 2605–2616.

    Article  Google Scholar 

  • Teklebirhan, A., Dessie, N., & Tesfamichael, G. (2012). Groundwater recharge, evapotranspiration and surface runoff estimation using wetspass modeling method in illala catchment, northern ethiopia. Momona Ethiopian Journal of Science, 4, 96–110.

    Article  Google Scholar 

  • Tilahun, K., & Merkel, B. J. (2009). Estimation of groundwater recharge using a gis-based distributed water balance model in dire dawa, ethiopia. Hydrogeology journal, 17, 1443–1457.

    Article  Google Scholar 

  • Wang, Y., Lei, X., Liao, W., Jiang, Y., Huang, X., Liu, J., et al. (2012). Monthly spatial distributed water resources assessment: a case study. Computers & Geosciences, 45, 319–330.

    Article  Google Scholar 

  • Willems, P. (2004). Wetspro: water engineering time series processing tool. Leuven Belgium: KU Leuven Hydraulics Laboratory.

    Google Scholar 

  • Willems, P. (2009). A time series tool to support the multi-criteria performance evaluation of rainfall-runoff models. Environmental Modelling & Software, 24, 311–321.

    Article  Google Scholar 

  • Yenehun, A., Nigate, F., Belay, A. S., Desta, M. T., Van Camp, M., & Walraevens, K. (2020). Groundwater recharge and water table response to changing conditions for aquifers at different physiography: The case of a semi-humid river catchment, northwestern highlands of ethiopia. Science of The Total Environment, 748, 142243.

  • Yenehun, A., Walraevens, K., & Batelaan, O. (2017). Spatial and temporal variability of groundwater recharge in geba basin, northern ethiopia. Journal of African Earth Sciences, 134, 198–212.

    Article  Google Scholar 

  • Yermolaev, O., Mukharamova, S., & Vedeneeva, E. (2021). River runoff modeling in the european territory of russia. Catena, 203, 105327.

  • Zhang, Y., Liu, S., Cheng, F., & Shen, Z. (2018). Wetspass-based study of the effects of urbanization on the water balance components at regional and quadrat scales in beijing, china. Water, 10, 5.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank two anonymous reviewers and associate editor for providing the constructive comments which helped significantly improving the quality of the paper. The first author would like to gratify Arba Minch Water Technology Institute (AWTI) and Ministry of Science & Higher Education(MoSHE) for financial support. In addition, the support of OWWCE (Oromia Water Work and Construction Enterprise), SCDSE (South Construction and Design Supervision Enterprise), SWWCE (South Water Work and Construction Enterprise), MoWIE (Ministry of Water Irrigation and Energy, Ethiopia) and ECDSI (Ethiopia Construction and Design supervision Enterprise) are greatly acknowledged for providing the data to conduct this research study.

Funding

Ministry of Science and Higher Education, Ethiopia and Water Resources Research Center, Arba Minch University, Ethiopia financially supported this research. [Project code: GOV/AMU/TH31/AWTI/WRRC/01/13].

Author information

Authors and Affiliations

Authors

Contributions

Ayano Hirbo Gelebo contributed to conceptualization, data acquisition, modeling, analysis of results, and original draft writing. K. S. Kasiviswanathan involved in conceptualization, supervision of data curation, visualization, review and writing/editing the manuscript. Deepak Khare performed supervision.

Corresponding author

Correspondence to K. S. Kasiviswanathan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gelebo, A.H., Kasiviswanathan, K.S. & Khare, D. Assessment of the spatial–temporal distribution of groundwater recharge in data-scarce large-scale African river basin. Environ Monit Assess 194, 157 (2022). https://doi.org/10.1007/s10661-022-09778-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09778-z

Keywords

Navigation