Skip to main content

Advertisement

Log in

Assessment of consumption and availability of water in the upper Omo-Gibe basin, Ethiopia

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Understanding water balance components is imperative for proper policy and decision making, specifically in the upper part of the Omo-Gibe basin (UOGB) Ethiopia. The objective of this study is to explore the possibility of assessing consumption and availability of water using freely available satellite data and secondary data. Using twenty-three rain gauge stations data, a spatial average of rainfall was computed using the Thiessen polygon approach. Actual evapotranspiration (ETa) was estimated through the Surface Energy Balance System (SEBS). Input data used are, 16 clouds free Moderate Resolution Imaging Spectroradiometer (MODIS) images covering the study area for estimation of the spatial distribution of actual evapotranspiration covering the whole cropping year from the months of November 2003 to October 2004. Additionally, Priestly and Taylor’s approach was used to estimate reference evapotranspiration (ET0). For the study period, the result of estimated precipitation and ETa showed that the UOGB received 41,080 mm3 of precipitation, while 24,135 mm3 become evapotranspired. The assessed outflow from the basin is 17.6% of the precipitation and demonstrated that water is a scares resource in the UOGB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmad M, Biggs T, Turral H, Scott CA (2006) Application of SEBAL approach and MODIS time-series to map vegetation water use patterns in the data-scarce Krishna river basin of India. Water Sci Technol 53:83–90. https://doi.org/10.2166/wst.2006.301

    Article  Google Scholar 

  • Ahmad MD, Turral H, Nazeer A (2009) Diagnosing irrigation performance and water productivity through satellite remote sensing and secondary data in a large irrigation system of Pakistan. Agric Water Manag 96:551–564. https://doi.org/10.1016/j.agwat.2008.09.017

    Article  Google Scholar 

  • Akbari M, Toomanian N, Droogers P, Bastiaanssen W, Gieske A (2007) Monitoring irrigation performance in Esfahan, Iran, using NOAA satellite imagery. Agric Water Manag 88(1–3):99–109. https://doi.org/10.1016/j.agwat.2006.10.019

    Article  Google Scholar 

  • Allen RG, Tasumi M, Morse A, Trezza R, Wright JL, Bastiaanssen W, Robison CW (2007) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) - model. J Irrig Drain Eng 133(4):380–394. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(395)

  • Bandara KMPS (2003) Monitoring irrigation performance in Sri Lanka with high-frequency satellite measurements during the dry season. Agric Sci 58:159–170

    Google Scholar 

  • Bastiaanssen WGM, Ahmad MD, Chemin Y (2002) Satellite surveillance of evaporative depletion across the Indus Basin. Water Resour Res 38(12):9-1–9-9. https://doi.org/10.1029/2001WR000386

    Article  Google Scholar 

  • Bos MG (2004) Using the depleted fraction to manage the groundwater table in irrigated areas. Irrig Drain Syst 18:201–209

    Article  Google Scholar 

  • Bos MG (2005) Is there enough freshwater? International Institute for Geo-Information Science and Earth Observation, Enschede, Netherlands, 16 pp

    Google Scholar 

  • De Fraiture C, Cai X, Rosegrant M, Molden D, Amarasinghe U (2003) Addressing the unanswered questions in global water policy: a methodology framework. Irrig Drain 52(November 2002):21–30

    Article  Google Scholar 

  • Droogers P, Bastiaanssen W (2002) Irrigation performance using hydrological and remote sensing modeling. J Irrig Drain Eng 128(1):11–18

    Article  Google Scholar 

  • Hemakumara HM, Chandrapala L, Moene AF (2003) Evapotranspiration fluxes over mixed vegetation areas measured from large aperture scintillometer. Agric Water Manag 58:109–122

    Article  Google Scholar 

  • Jia L, Su Z, van den Hurk B, Menenti M, Moene A, De Bruin HAR, Cuesta A (2003) Estimation of sensible heat flux using the Surface Energy Balance System (SEBS) and ATSR measurements. Phys Chem Earth 28(1–3):75–88. https://doi.org/10.1016/S1474-7065(03)00009-3

  • Kurkura M (2011) Water balance of upper awash basin based on satellite-derived data (remote sensing). MSc Thesis, Addis Ababa University 134pp

  • Matinfar HR, Soorghali M (2014) Estimate evapotranspiration (ET) using SEBS model based on Landsat 5 (TM) thermal data and GIS. Ind J Fund App Life Sci 4(3):30–34

    Google Scholar 

  • Monteith JL (1981) Evaporation and surface temperature. Q J R Meteorol Soc 107:1–27

    Article  Google Scholar 

  • Muthuwatta LP, Ahmad MD, Bos MG, Rientjes THM (2010) Assessment of water availability and consumption in the Karkheh river basin, Iran-using remote sensing, and geo-statistics. Water Resour Manag 24(3):459–484. https://doi.org/10.1007/s11269-009-9455-9

    Article  Google Scholar 

  • Ncube N, Zhakata D, Muchandiona A (2016) Application of a remote sensing technique in estimating evapotranspiration for Nyazvidzi sub-catchment, Zimbabwe. Eur Sci J 12(21):101–115. https://doi.org/10.19044/esj.2016.v12n21p101

    Article  Google Scholar 

  • Nichols WE, Cuenca RH (1993) Evaluation of the evaporative fraction for parameterization of the surface energy balance. Water Resour Res 29(11):3681–3690. https://doi.org/10.1029/93WR01958

    Article  Google Scholar 

  • Roerink GJ, Su Z, Menenti M (2000) S-SEBI: a simple remote sensing algorithm to estimate the surface energy balance. Phy Chem Earth, Part B: Hydr Oce Atm 25(2):147–157. https://doi.org/10.1016/S1464-1909(99)00128-8

    Article  Google Scholar 

  • Rwasoka DT, Gumindoga W, Gwenzi J (2011) Estimation of actual evapotranspiration using the Surface Energy Balance System (SEBS) algorithm in the Upper Manyame catchment in Zimbabwe. Phys Chem Earth 36(14–15):736–746. https://doi.org/10.1016/j.pce.2011.07.035

    Article  Google Scholar 

  • Samboko H (2016) A remote sensing-based approach to determine evapotranspiration in the Mbire District of Zimbabwe. MSc Thesis, University of Zimbabwe 82pp

  • Shuttleworth WJ, Gurney RJ, Hsu AY, Ormsby JP (1989) FIFE: the variation in energy partition at surface flux sites. IAHS Publ, 186(6)

  • Su Z (2002) The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol Earth Syst Sci 6(1):85–99. https://doi.org/10.5194/hess-6-85-2002

    Article  Google Scholar 

  • Su Z, Yacob A, Wen J, Roerink G, He Y, Gao B, Cvan D (2003) Assessing relative soil moisture with remote sensing data: theory, experimental validation, and application to drought monitoring over the North China Plain. Phys Chem Earth 28:89–101. https://doi.org/10.1016/S1474-7065(03)00010-X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mudesir Nesru.

Additional information

Responsible Editor: Abdullah M. Al-Amri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesru, M., Nagaraj, M.K. & Shetty, A. Assessment of consumption and availability of water in the upper Omo-Gibe basin, Ethiopia. Arab J Geosci 13, 13 (2020). https://doi.org/10.1007/s12517-019-4897-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-019-4897-8

Keywords

Navigation