Skip to main content

Groundwater in the Nile Delta Aquifer, Egypt: Assessment, Modelling and Management with Climate Change in the Core

  • Chapter
  • First Online:
Groundwater in Arid and Semi-Arid Areas

Abstract

Groundwater (GW) in the Nile Delta aquifer (NDA) is one of the most abundant freshwater sources of Egypt. Different activities such as agriculture, GW pumping, urbanization, industrial discharges and waste disposal significantly impact the quality of GW. Therefore, GW pollution has become a critical environmental issue in Egypt. The increasing use of fertilizers, pesticides, and the saltwater intrusion (SWI) into Mediterranean’s coastal areas put the GW of the Nile Delta (ND) at a high risk of contamination. Furthermore, increasing pumping discharges and Sea Level Rise (SLR) further exacerbate the rate of SWI and deteriorate the GW quality of the ND. Understanding GW vulnerability is crucial for decision makers to manage GW resources and assess risks effectively. Moreover, GW modelling provides a comprehensive overview of water flow and contaminant transport through aquifers, aiding in assessment and GW resources management. This book chapter provides insights on the previous GW vulnerability studies, GW modelling, SWI modelling, and GW management studies in the NDA. The research can be applied to future resource management for GW in the Nile Delta (ND), freshwater protection, and risk management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abd-Elaty I, Abd-Elmoneem SM, Abdelaal GM, Vrána J, Vranayová Z, Abd-Elhamid HF (2022) Groundwater quality modeling and mitigation from wastewater used in irrigation, a case study of the Nile Delta aquifer in Egypt. Int J Environ Res Public Health 19(22):14929. https://doi.org/10.3390/ijerph192214929

    Article  Google Scholar 

  2. Abd-Elaty I, Javadi AA, Abd-Elhamid H (2021) Management of saltwater intrusion in coastal aquifers using different wells systems: a case study of the Nile Delta aquifer in Egypt. Hydrogeol J 29(5):1767–1783. https://doi.org/10.1007/s10040-021-02344-w

    Article  Google Scholar 

  3. Abd-Elaty I, Pugliese L, Bali KM, Grismer ME, Eltarabily MG (2022) Modelling the impact of lining and covering irrigation canals on underlying groundwater stores in the Nile Delta, Egypt. Hydrol Process 36(1):e14466. https://doi.org/10.1002/hyp.14466

  4. Abd-Elaty I, Zelenakova M, Straface S, Vranayová Z, Abu-hashim M (2019) Integrated modelling for groundwater contamination from polluted streams using new protection process techniques. Water 11(11):2321. https://doi.org/10.3390/w11112321

  5. Abd-Elaty IM (2014) Numerical and experimental study for simulating climatic changes effects on Nile Delta aquifer [Ph.D. Thesis]. Ph.D. thesis, Faculty of Engineering, Zagazig University, Zagazig

    Google Scholar 

  6. Abdelaty IM, Abd-Elhamid HF, Fahmy MR, Abdelaal GM (2014) Investigation of some potential parameters and its impacts on saltwater intrusion in Nile Delta aquifer. JES. J Eng Sci 42(4):931–955

    Google Scholar 

  7. Abdelhaleem F, Helal E (2015) Impacts of grand Ethiopian renaissance dam on different water usages in upper Egypt. Br J Appl Sci Technol 8(5):461–483. https://doi.org/10.9734/BJAST/2015/17252

  8. Abd-Elhamid H, Javadi A, Abdelaty I, Sherif M (2016) Simulation of seawater intrusion in the Nile Delta aquifer under the conditions of climate change. Hydrol Res 47(6):1198–1210. https://doi.org/10.2166/nh.2016.157

  9. Abd-Elhamid HF (2010) A simulation-optimization model to study the control of seawater intrusion in coastal aquifers. University of Exeter

    Google Scholar 

  10. Abd-Elhamid HF (2016) Investigation and control of seawater intrusion in the Eastern Nile Delta aquifer considering climate change. Water Supply 17(2):311–323. https://doi.org/10.2166/ws.2016.129

    Article  Google Scholar 

  11. Abd-Elhamid HF, Abd-Elaty I, Hussain MS (2020) Mitigation of seawater intrusion in coastal aquifers using coastal earth fill considering future sea level rise. Environ Sci Pollut Res 27(18):23234–23245. https://doi.org/10.1007/s11356-020-08891-1

    Article  Google Scholar 

  12. Abd-Elhamid HF, Abd-Elaty I, Negm AM (2018) Control of saltwater intrusion in coastal aquifers. In: Negm AM (ed) Groundwater in the Nile Delta, vol 73. Springer International Publishing, pp 355–384. https://doi.org/10.1007/698_2017_138

  13. Abd-Elhamid HF, Abd-Elkader BS, Wahed O, Zeleňáková M, Abd-Elaty I (2022) Assessment of changing the abstraction and recharge rates on the land subsidence in the Nile Delta, Egypt. Water 14(7):1096. https://doi.org/10.3390/w14071096

    Article  Google Scholar 

  14. Abd-Elhamid HF, Javadi AA (2008) An investigation into control of saltwater intrusion considering the effects of climate change and sea level rise. 4

    Google Scholar 

  15. Abd-Elhamid HF, Javadi AA (2010) A simulation-optimization model to study the control of seawater intrusion in coastal aquifers using ADR methodology. In: Proceedings of the twenty-first salt water intrusion meeting (SWIM), Azores, Portugal, June, 21–26

    Google Scholar 

  16. Abd-Elhamid HF, Javadi AA (2011) A cost-effective method to control seawater intrusion in coastal aquifers. Water Resour Manage 25(11):2755–2780. https://doi.org/10.1007/s11269-011-9837-7

    Article  Google Scholar 

  17. Abd-Elziz S, Zeleňáková M, Kršák B, Abd-Elhamid HF (2022) Spatial and temporal effects of irrigation canals rehabilitation on the land and crop yields, a case study: the Nile Delta, Egypt. Water 14(5):808. https://doi.org/10.3390/w14050808

    Article  Google Scholar 

  18. Abrol IP, Yadav JSP, Massoud FI (1988) Salt-affected soils and their management. Food Agric Org

    Google Scholar 

  19. Abu-Bakr HAE-A (2020) Groundwater vulnerability assessment in different types of aquifers. Agric Water Manag 240:106275. https://doi.org/10.1016/j.agwat.2020.106275

    Article  Google Scholar 

  20. Ageeb GW, Ali RR, El Semary MA, Essa EF (2017) Characterizing groundwater West of Nile Delta using electric resistivity

    Google Scholar 

  21. Ahirwar S, Shukla JP (2018). Assessment of groundwater vulnerability in upper Betwa river watershed using GIS based DRASTIC model. J Geol Soc India 91(3):334–340. https://doi.org/10.1007/s12594-018-0859-0

  22. Ahmed AO, Khalaf S, Abdalla MG, El Masry AA, Author C (2015) Groundwater management in Wadi El Natrun Pliocene aquifer, Egypt. Int J Sci Eng Res 6(9):291–302

    Google Scholar 

  23. Al-Agha DE, Closas A, Molle F (2015) Survey of groundwater use in the central part of the Nile Delta. Water and Salt Management in the Nile Delta: Report

    Google Scholar 

  24. Aller L, Bennett T, Lehr J, Petty RJ, Hackett G (1987) DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings. US Environmental Protection Agency, Washington, DC, p 455

    Google Scholar 

  25. Aly AH, Peralta RC (1999) Optimal design of aquifer cleanup systems under uncertainty using a neural network and a genetic algorithm. Water Resour Res 35(8):2523–2532

    Article  Google Scholar 

  26. Anane M, Abidi B, Lachaal F, Limam A, Jellali S (2013) GIS-based DRASTIC, pesticide DRASTIC and the Susceptibility Index (SI): comparative study for evaluation of pollution potential in the Nabeul-Hammamet shallow aquifer, Tunisia. Hydrogeol J 21(3):715–731. https://doi.org/10.1007/s10040-013-0952-9

    Article  Google Scholar 

  27. Anon (1980) Investigation project of sustained yield of aquifers, part 1. Groundwater Research Institute Cairo

    Google Scholar 

  28. Arafa NA, Salem ZE-S, Ghorab MA, Soliman SA, Abdeldayem AL, Moustafa YM, Ghazala HH (2022) Evaluation of groundwater sensitivity to pollution using GIS-based modified DRASTIC-LU model for sustainable development in the Nile Delta Region. Sustainability 14(22):14699. https://doi.org/10.3390/su142214699

    Article  Google Scholar 

  29. Arby RS (2017) the rejection of Egypt toward grand Ethiopian renaissance Dam in Ethiopia (2011–2016). http://repository.umy.ac.id/handle/123456789/11418

  30. Armanuos A, Ahmed K, Sanusi Shiru M, Jamei M (2021) Impact of increasing pumping discharge on groundwater level in the Nile Delta aquifer, Egypt. Knowl-Based Eng Sci 2(2):13–23. https://doi.org/10.51526/kbes.2021.2.2.13-23

  31. Armanuos AM (2017) Experimental and numerical study of saltwater intrusion in the Nile delta aquifer, Egypt [PhD Thesis]. Egypt-Japan University of Science and Technology (E-JUST)

    Google Scholar 

  32. Armanuos AM, Al-Ansari N, Yaseen ZM (2020) Assessing the effectiveness of using recharge wells for controlling the saltwater intrusion in unconfined coastal aquifers with sloping beds: numerical study. Sustainability 12(7):2685. https://doi.org/10.3390/su12072685

  33. Armanuos AM, Al-Ansari N, Yaseen ZM (2020) Underground barrier wall evaluation for controlling saltwater intrusion in sloping unconfined coastal aquifers. Water 12(9):2403. https://doi.org/10.3390/w12092403

    Article  Google Scholar 

  34. Armanuos AM, Allam A, Negm AM (2019) Assessment of groundwater vulnerability to pollution in Western Nile delta aquifer, Egypt. In: Twenty-second international water technology conference, IWTC22

    Google Scholar 

  35. Armanuos AM, Allam A, Negm AM (2020) Assessment of groundwater vulnerability to pollution in Western Nile delta aquifer, Egypt. Int Water Technol J (IWTJ) 10

    Google Scholar 

  36. Armanuos AM, Eldin Ibrahim MG, Negm A, Takemura J, Yoshimura C, Mahmod WE (2022) Investigation of seawater intrusion in the Nile Delta aquifer, Egypt. J Eng Res 6(1):10–28

    Google Scholar 

  37. Armanuos AM, Ibrahim MG, Mahmod WE, Negm A, Yoshimura C, Takemura J, Zidan BA (2017) Evaluation of the potential impact of Grand Ethiopian Renaissance Dam and pumping scenarios on groundwater level in the Nile Delta aquifer. Water Supply 17(5):1356–1367. https://doi.org/10.2166/ws.2017.037

  38. Armanuos AM, Ibrahim MG, Mahmod WE, Takemura J, Yoshimura C (2019) Analysing the combined effect of barrier wall and freshwater injection countermeasures on controlling saltwater intrusion in unconfined coastal aquifer systems. Water Resour Manage 33(4):1265–1280. https://doi.org/10.1007/s11269-019-2184-9

    Article  Google Scholar 

  39. Armanuos AM, Negm A (2018) Integrated groundwater modeling for simulation of saltwater intrusion in the Nile Delta aquifer, Egypt. Groundwater Nile Delta. https://doi.org/10.1007/698_2017_184

    Article  Google Scholar 

  40. Artuso E, Oliveira MM, Lobo-Ferreira JP (2002) Assessment of groundwater vulnerability to pollution using six different methods: AVI, GOD, DRASTIC, SI, EPPNA and SINTACS. Application to Evora Aquifer. LNEC-GIAS, Lisbon

    Google Scholar 

  41. Attalla RA (2015) Grand Ethiopian renaissance dam (GERD). Worcester Polytechnic Institute

    Google Scholar 

  42. Aziz SA, Zeleňáková M, Mésároš P, Purcz P, Abd-Elhamid H (2019) Assessing the potential impacts of the Grand Ethiopian renaissance dam on water resources and soil salinity in the Nile Delta, Egypt. Sustainability 11(24):7050

    Article  Google Scholar 

  43. Bajjali W (2005) Model the effect of four artificial recharge dams on the quality of groundwater using geostatistical methods in GIS environment, Oman

    Google Scholar 

  44. Bates B, Kundzewicz Z, Wu S (2008) Climate change and water. Intergovernmental panel on climate change secretariat

    Google Scholar 

  45. Botero-Acosta A, Donado LD (2015) Laboratory scale simulation of hydraulic barriers to seawater intrusion in confined coastal aquifers considering the effects of stratification. Procedia Environ Sci 25:36–43. https://doi.org/10.1016/j.proenv.2015.04.006

    Article  Google Scholar 

  46. Bray BS, Yeh WW-G (2008) Improving seawater barrier operation with simulation optimization in southern California. J Water Resour Plan Manag 134(2):171–180

    Article  Google Scholar 

  47. Brindha K, Elango L (2015) Cross comparison of five popular groundwater pollution vulnerability index approaches. J Hydrol 524:597–613. https://doi.org/10.1016/j.jhydrol.2015.03.003

    Article  Google Scholar 

  48. Cederstrom DJ (1947) Artificial recharge of a brackish water well. US Geological Survey

    Google Scholar 

  49. Chandoul IR, Bouaziz S, Dhia HB (2015) Groundwater vulnerability assessment using GIS-based DRASTIC models in shallow aquifer of Gabes North (South East Tunisia). Arab J Geosci 8(9):7619–7629. https://doi.org/10.1007/s12517-014-1702-6

    Article  Google Scholar 

  50. Civita M (1994) Aquifer vulnerability maps to pollution. Pitagora Ed., Bologna

    Google Scholar 

  51. Dahab KA (1993) Hydrological evaluation of the Nile Delta after the high dam construction [Ph.D. Thesis]. PhD thesis. Faculty of Science. Monofia University, Egypt

    Google Scholar 

  52. Dawoud MA, Darwish MM, El-Kady MM (2005) GIS-based groundwater management model for Western Nile Delta. Water Resour Manage 19(5):585–604. https://doi.org/10.1007/s11269-005-5603-z

  53. Dillon P (2005) Future management of aquifer recharge. Hydrogeol J 13(1):313–316. https://doi.org/10.1007/s10040-004-0413-6

    Article  Google Scholar 

  54. Doerfliger N, Jeannin P-Y, Zwahlen F (1999) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ Geol 39(2):165–176

    Article  Google Scholar 

  55. Dror I, Berkowitz B, Gorelick SM (2004). Effects of air injection on flow through porous media: observations and analyses of laboratory-scale processes. Water Resour Res 40(9). https://doi.org/10.1029/2003WR002960

  56. El Arabi N (2012) Environmental management of groundwater in Egypt via artificial recharge extending the practice to soil aquifer treatment (SAT). Int J Environ Sustain 1(3). https://doi.org/10.24102/ijes.v1i3.91

  57. El Guindy S, Risseeuw IA, Nijland HJ (1987) Research on water management of rice fields in the Nile Delta, Egypt. International Institute for Land Reclamation and Improvement (ILRI)

    Google Scholar 

  58. El Molla AM, Dawoud MA, Hassan MS, EWEA HA MR (2005). Integrated management of water resources in Western Nile Delta: 1-building and calibrating the groundwater model. In: ASCE 4th international symposium on environmental hydrology, Cairo, Egypt. Accessed 7–9

    Google Scholar 

  59. El Naqa A (2004) Aquifer vulnerability assessment using the DRASTIC model at Russeifa landfill, northeast Jordan. Environ Geol 47(1):51–62. https://doi.org/10.1007/s00254-004-1126-9

    Article  Google Scholar 

  60. El Osta M, Hussein H, Tomas K (2018) Numerical simulation of groundwater flow and vulnerability in Wadi El-Natrun depression and vicinities, West Nile Delta, Egypt. J Geol Soc India 92(2):235–247. https://doi.org/10.1007/s12594-018-0986-7

  61. El Shinawi A, Zeleňáková M, Nosair AM, Abd-Elaty I (2022) Geo-spatial mapping and simulation of the sea level rise influence on groundwater head and upward land subsidence at the Rosetta coastal zone, Nile delta, Egypt. J King Saud Univ Sci. https://doi.org/10.1016/j.jksus.2022.102145

    Article  Google Scholar 

  62. El-Agha DE, Closas A, Molle F (2015) Dynamics of groundwater use in the central part of the Nile Delta. Dry Land Systems Report, IWMI, WMRI, Cairo

    Google Scholar 

  63. El-Atfy H (2007) Integrated national water resources plan in Egypt. Ministry of Water Resources and Irrigation Alexandria Governorate

    Google Scholar 

  64. Elewa HH, Shohaib RE, Qaddah AA, Nousir AM (2013). Determining groundwater protection zones for the Quaternary aquifer of northeastern Nile Delta using GIS-based vulnerability mapping. Environ Earth Sci 68(2):313–331. https://doi.org/10.1007/s12665-012-1740-x

  65. El-Nashar WY, Elyamany AH (2018) Managing risks of the Grand Ethiopian renaissance dam on Egypt. Ain Shams Eng J 9(4):2383–2388. https://doi.org/10.1016/j.asej.2017.06.004

  66. El-Sagheer AA, Amin MM, Refaat MM, Freeshah MA (2016) Groundwater storage changes detected from gravity recovery and climate experiment (GRACE) data in Nile Delta aquifer. https://www.researchgate.net/publication/305637364

  67. Eltarabily MG, Negm AM, Yoshimura C, Saavedra OC (2017) Modeling the impact of nitrate fertilizers on groundwater quality in the southern part of the Nile Delta, Egypt. Water Sci Technol Water Supply 17(2):561–570

    Article  Google Scholar 

  68. Eltarabily MG, Negm AM, Yoshimura C, Takemura J (2018) Groundwater modeling in agricultural watershed under different recharge and discharge scenarios for quaternary aquifer Eastern Nile Delta, Egypt. Environ Model Assess 23(3):289–308. https://doi.org/10.1007/s10666-017-9577-z

  69. Essawy BTA (2013) Effect of climate change on sea water intrusion in the Nile Delta coastal aquifer (M.Sc. Thesis). Faculty of Engineering at Cairo University Giza, Egypt

    Google Scholar 

  70. Ezzeldin MM, El Alfy KS, Gawad HAA, Abd Elmaboud ME (2018) Comparison between structured and unstructured MODFLOW for simulating groundwater flow in three-dimensional multilayer quaternary aquifer of East Nile Delta, Egypt. Hydrol Curr Res 09(01). https://doi.org/10.4172/2157-7587.1000297

  71. FAO (1985) Water quality for agriculture irrigation and drainage (paper no. 29, rev. 1)

    Google Scholar 

  72. Farid MS (1980) Nile Delta groundwater study. M.Sc. The-Sis, Faculty of Engineering, Cairo University, Cairo

    Google Scholar 

  73. Farrag AA (2005) The hydraulic and hydrochemical impacts of the Nile system on the groundwater in upper Egypt. Assute Univ Bull Environ Res 8(1):87–102

    Google Scholar 

  74. Foster SSD (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. Vulnerability of soil and groundwater to pollutants. International Conference (Noordwijk Aan Zee 1987-03-30)

    Google Scholar 

  75. Gad MI, El-Kammar MM, Ismail HMG (2015) Groundwater vulnerability assessment using different overlay and index methods for quaternary aquifer of Wadi El-Tumilat, East Delta, Egypt. Asian Rev Environ Earth Sci 2(1):9–22. http://www.asianonlinejournals.com/index.php/AREES

  76. Gemail KS, Alfy ME, Ghoneim MF, Shishtawy AM, El-Bary MA (2017) Comparison of DRASTIC and DC resistivity modeling for assessing aquifer vulnerability in the central Nile Delta, Egypt. Environ Earth Sci 76(9):1–17. https://doi.org/10.1007/s12665-017-6688-4

    Article  Google Scholar 

  77. Ghazavi R, Ebrahimi Z (2015) Assessing groundwater vulnerability to contamination in an arid environment using DRASTIC and GOD models. Int J Environ Sci Technol 12(9):2909–2918. https://doi.org/10.1007/s13762-015-0813-2

    Article  Google Scholar 

  78. Ghoraba SM, Zyedan BA, Rashwan IMH (2013) Solute transport modeling of the groundwater for quaternary aquifer quality management in Middle Delta, Egypt. Alexandria Eng J 52(2):197–207. https://doi.org/10.1016/j.aej.2012.12.007

    Article  Google Scholar 

  79. Gossel W, Sefelnasr A, Wycisk P (2010) Modelling of paleo-saltwater intrusion in the northern part of the Nubian aquifer system, Northeast Africa. Hydrogeol J 18(6):1447–1463. https://doi.org/10.1007/s10040-010-0597-x

    Article  Google Scholar 

  80. Hasan Basri M (2001) Two new methods for optimal design of subsurface barrier to control seawater intrusion [Ph.D]. University of Manitoba

    Google Scholar 

  81. Huan H, Wang J, Teng Y (2012) Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: a case study in Jilin City of northeast China. Sci Total Environ 440:14–23. https://doi.org/10.1016/j.scitotenv.2012.08.037

  82. Hussain MS (2015) Numerical simulation and effective management of saltwater intrusion in coastal aquifers [Ph.D]. University of Exeter

    Google Scholar 

  83. Hussain MS, Javadi AA, Sherif MM (2015) Three dimensional simulation of seawater intrusion in a regional coastal aquifer in UAE. Procedia Eng 119:1153–1160. https://doi.org/10.1016/j.proeng.2015.08.965

    Article  Google Scholar 

  84. Hussain MS, Javadi AA, Sherif MM (2016) Artificial recharge of coastal aquifers using treated wastewater to control saltwater intrusion. Qual Quant 1:4

    Google Scholar 

  85. Hussein EE, Fouad M, Gad MI (2019) Prediction of the pollutants movements from the polluted industrial zone in 10th of Ramadan city to the Quaternary aquifer. Appl Water Sci 9(1):1–19. https://doi.org/10.1007/s13201-019-0897-9

    Article  Google Scholar 

  86. Ismael A (2007) Applications of remote sensing, GIS, and groundwater flow modeling in evaluating groundwater resources: two case studies; East Nile Delta, Egypt and Gold Valley, California. ETD Collection for University of Texas, El Paso, USA

    Google Scholar 

  87. James G, Hiebert R, Warwood B, Cunningham A (2001) Subsurface biofilm for controlling saltwater intrusion. In: Proceeding of the 1st international conference and workshop on saltwater intrusion and coastal aquifers, monitoring, modelling, and management, Morocco.

    Google Scholar 

  88. Javadi A, Hussain M, Sherif M, Farmani R (2015) Multi-objective optimization of different management scenarios to control seawater intrusion in coastal aquifers. Water Resour Manage 29(6):1843–1857. https://doi.org/10.1007/s11269-015-0914-1

    Article  Google Scholar 

  89. Javadi A, Hussain MS, Sherif MM (2013) Optimal control of seawater intrusion in coastal aquifers. In: International conference on computational mechanics (CM13). http://hdl.handle.net/10871/18648

  90. Kashef A-AI (1983) Harmonizing Ghyben-Herzberg interface with rigorous solutions. Groundwater 21(2):153–159

    Article  Google Scholar 

  91. Khalifa AA, Elshemy MM, Masoud AA, Rashwan IMH (2019). Assessment of aquifer vulnerability for pollution for middle delta in Egypt using geographic information system and DRASTIC technique. J Eng Res 3:132–139. https://doi.org/10.21608/erjeng.2019.125528

  92. Kotb TH, Watanabe T, Ogino Y, Tanji KK (2000) Soil salinization in the Nile Delta and related policy issues in Egypt. Agric Water Manag 43(2):239–261

    Article  Google Scholar 

  93. Luyun R, Momii K, Nakagawa K (2011) Effects of recharge wells and flow barriers on seawater intrusion. Ground Water 49(2):239–249. https://doi.org/10.1111/j.1745-6584.2010.00719.x

    Article  Google Scholar 

  94. Mabrouk M, Jonoski A, Oude Essink GHP, Uhlenbrook S (2018) Impacts of sea level rise and groundwater extraction scenarios on fresh groundwater resources in the Nile Delta governorates, Egypt. Water, 10(11):1690. https://doi.org/10.3390/w10111690

  95. Mabrouk M, Jonoski A, Oude Essink GH, Uhlenbrook S (2019) Assessing the fresh–saline groundwater distribution in the Nile delta aquifer using a 3D variable-density groundwater flow model. Water 11(9):1946. https://doi.org/10.3390/w11091946

  96. Mabrouk MB, Jonoski A, Solomatine D, Uhlenbrook S (2013) A review of seawater intrusion in the Nile Delta groundwater system–the basis for assessing impacts due to climate changes and water resources development. Hydrol Earth Syst Sci Discuss 10(8):10873–10911

    Google Scholar 

  97. Mahmoud M, El-Shahat A (2005) Geoelectric resistivity contribution to the late quaternary geology of the north eastern corner of the Nile Delta, Egypt. In: The sixth annual U.A.E. University Research Conference

    Google Scholar 

  98. Masoud AA (2014) Groundwater quality assessment of the shallow aquifers west of the Nile Delta (Egypt) using multivariate statistical and geostatistical techniques. J Afr Earth Sc 95:123–137. https://doi.org/10.1016/j.jafrearsci.2014.03.006

    Article  Google Scholar 

  99. Mazi A (2014) Seawater intrusion risks and controls for safe use of coastal groundwater under multiple change pressures [Ph.D. Thesis]. Department of Physical Geography and Quaternary Geology, Stockholm University

    Google Scholar 

  100. McKinney DC, Lin M-D (1994) Genetic algorithm solution of groundwater management models. Water Resour Res 30(6):1897–1906. https://doi.org/10.1029/94WR00554

    Article  Google Scholar 

  101. Mendizabal I, Stuyfzand PJ (2011) Quantifying the vulnerability of well fields towards anthropogenic pollution: the Netherlands as an example. J Hydrol 398(3–4):260–276. https://doi.org/10.1016/j.jhydrol.2010.12.026

  102. Metwally MI, Armanuos AM, Zeidan BA (2022) Comparative study for assessment of groundwater vulnerability to pollution using DRASTIC methods applied to central Nile Delta, Egypt. Int J Energy Water Resour. https://doi.org/10.1007/s42108-022-00198-w

    Article  Google Scholar 

  103. Mogren S, Shehata M (2012) Groundwater vulnerability and risk mapping of the Quaternary aquifer system in the Northeastern part of the Nile Delta, Egypt. Int Res J Geol Mining (IRJGM)

    Google Scholar 

  104. Mohamed A (2020) Gravity applications to groundwater storage variations of the Nile Delta aquifer. J Appl Geophys 182:104177. https://doi.org/10.1016/j.jappgeo.2020.104177

    Article  Google Scholar 

  105. Mohamed A, Ragaa Eldeen E, Abdelmalik K (2021) Gravity based assessment of spatio-temporal mass variations of the groundwater resources in the Eastern Desert, Egypt. Arab J Geosci 14(6):1–15. https://doi.org/10.1007/s12517-021-06885-y

    Article  Google Scholar 

  106. Mohammed IG (2015) Modeling of contaminant transport in 10th of Ramadan City area, East Delta, Egypt. Int J Water Resour Environ Eng 7(10):139–152. https://doi.org/10.5897/IJWREE2014.0616

  107. Morsy WS (2009) Environmental management to groundwater resources for Nile Delta region [Ph.D. Thesis]. Faculty of Engineering, Cairo University Cairo, Egypt

    Google Scholar 

  108. Motallebian M, Ahmadi H, Raoof A, Cartwright N (2019) An alternative approach to control saltwater intrusion in coastal aquifers using a freshwater surface recharge canal. J Contam Hydrol 222:56–64. https://doi.org/10.1016/j.jconhyd.2019.02.007

    Article  Google Scholar 

  109. Moussa A, Soliman M, Aziz M (2001) Environmental evaluation for High Aswan Dam since its construction until present. In: Sixth international water technology conference, IWTC, Alexandria, Egypt

    Google Scholar 

  110. Murat V (2000) Étude comparative des méthodes d’évaluation de la vulnérabilité intrinsèque des aquifères à la pollution: Application aux aquifères granulaires du piémont laurentien. [Ph.D. Thesis]. Université du Québec, Institut national de la recherche scientifique

    Google Scholar 

  111. MWRI (2005) National water resources plan for Egypt 2017

    Google Scholar 

  112. MWRI (2013) Adaptation to climate change in the Nile Delta through integrated coastal zone management. Ministry of Water Resources and Irrigation Cairo, Egypt

    Google Scholar 

  113. Navalur KCS, Engel BA (1997) Predicting spatial distribution of vulnerability of Indiana State Aquifer system to nitrate leaching using a GIS. SANTA_FE_CDROM/Sf_papers/Navulur_kumar/My_paper.Html. http://ncgia.ucsb.edu/conf

  114. Navulur KCS (1996) Groundwater vulnerability evaluation to nitrate pollution on a regional scale using GIS [Ph.D. Thesis]. Purdue University

    Google Scholar 

  115. Nofal ER, Amer MA, El-Didy SM, Fekry AM (2015). Sea water intrusion in Nile Delta in perspective of new configuration of the aquifer heterogeneity using the recent stratigraphy data. J Am Sci 11(6):281–292. http://www.jofamericanscience.org

  116. Nofal ER, Fekry AM, Ahmed MH, El-Kharakany MM (2018). Groundwater: Extraction versus recharge; vulnerability assessment. Water Sci 32(2):287–300. https://doi.org/10.1016/j.wsj.2018.07.002

  117. Nossair AM (2011) Climate changes and their impacts on groundwater occurrence in the northern part of east Nile Delta [Ph.D. Thesis]. M.Sc. thesis, Faculty of Science, Zagazig University, Egypt

    Google Scholar 

  118. Ofelia T, Marcela P, Monica D (2004). Salt water vertical upward intrusion due to intensive exploitation. Santa Fe. Argentina. In: Proceeding of the 18th Salt Water Intrusion Meeting, Cartagena (Spain)

    Google Scholar 

  119. Oude Essink GH (2001) Improving fresh groundwater supply—problems and solutions. Ocean Coastal Manage 44(5):429–449. https://doi.org/10.1016/S0964-5691(01)00057-6

  120. Oude Essink GH (2001) Salt water intrusion in a three-dimensional groundwater system in the Netherlands: a numerical study. Transp Porous Media 43(1):137–158

    Article  Google Scholar 

  121. Petelet-Giraud E, Dörfliger N, Crochet P (2000). RISKE: Méthode d’évaluation multicritère de la cartographie de la vulnérabilité des aquifères karstiques. Application aux systèmes des Fontanilles et Cent-Fonts (Hérault, Sud de la France). Hydrogéologie (Orléans) 4:71–88. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14309961

  122. Rahman A (2008) A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Appl Geogr 28(1):32–53. https://doi.org/10.1016/j.apgeog.2007.07.008

    Article  Google Scholar 

  123. Ramadan SM, Negm AM, Smanny M, Helmy A (2013) Environmental impacts of Great Ethiopian Renaissance Dam on the Egyptian water resources management and security, Conference Paper

    Google Scholar 

  124. Ramadan SM, Negm AM, Smanny M, Helmy AHM (2015). Quantifying the impacts of impounding grand Ethiopian renaissance dam reservoir on Nasser lake active storage. In: Proceedings of eighteenth international water technology conference (IWTC 18), Sharm ElSheikh, pp 12–14

    Google Scholar 

  125. Rastogi AK, Choi GW, Ukarande SK (2004) Diffused interface model to prevent ingress of sea water in multi-layer coastal aquifers. J Spatial Hydrol 4(2)

    Google Scholar 

  126. Reichard EG, Johnson TA (2005) Assessment of regional management strategies for controlling seawater intrusion. J Water Resour Plan Manag 131(4):280–291

    Article  Google Scholar 

  127. Ribeiro L (2000) SI: a new index of aquifer susceptibility to agricultural pollution. ERSHA/CVRM, Instituto Superior Técnico, Lisboa, Portugal

    Google Scholar 

  128. RIGW (1990) Hydrogeological map for the Nile Delta area, scale 1: 500000. Research Institute for Ground Water. El Kanter El Khairia Egypt

    Google Scholar 

  129. RIGW (2002) Nile Delta groundwater modeling report. Research Institute for Groundwater

    Google Scholar 

  130. RIGW/IWACO (1999) Environmental management of groundwater resources (EMGR). Final Technical Report TN/70.0067/WQM/97/20; Kanater El-Khairia, Egypt

    Google Scholar 

  131. Rogers LL, Dowla FU (1994) Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Water Resour Res 30(2):457–481

    Article  Google Scholar 

  132. Ru Y, Jinno K, Hosokawa T, Nakagawa K (2001). Study on effect of subsurface dam in coastal seawater intrusion. In: First international conference on saltwater intrusion and coastal aquifers monitoring, modeling, and management. Essaouira, Morocco, pp 23–25

    Google Scholar 

  133. Saatsaz M, Sulaiman WNA, Eslamian S, Mohammadi K (2011) GIS DRASTIC model for groundwater vulnerability estimation of Astaneh-Kouchesfahan Plain, Northern Iran. Int J Water 6(1–2):1–14

    Article  Google Scholar 

  134. Saha D, Alam F (2014) Groundwater vulnerability assessment using DRASTIC and Pesticide DRASTIC models in intense agriculture area of the Gangetic plains, India. Environ Monit Assess 186(12):8741–8763. https://doi.org/10.1007/s10661-014-4041-x

    Article  Google Scholar 

  135. Sakr SA, Attia FA, Millette JA (2004) Vulnerability of the Nile Delta aquifer of Egypt to seawater intrusion. In: International conference on water resources of arid and semi-arid regions of Africa, issues and challenges, Gaborone, Botswana

    Google Scholar 

  136. Salem ZE, Gaame OM, Hassan TM (2018). Integrated subsurface thermal regime and hydrogeochemical data to delineate the groundwater flow system and seawater intrusion in the Middle Nile Delta, Egypt. Groundwater Nile Delta 461–486

    Google Scholar 

  137. Salem ZE, Hasan SS (2021) Use of GALDIT model and HFE-diagram to assess seawater intrusion vulnerability in West Nile Delta, Egypt. Arab J Geosci 14(14):1–15. https://doi.org/10.1007/s12517-021-07678-z

    Article  Google Scholar 

  138. Salem ZE, Sefelnasr AM, Hasan SS (2019) Assessment of groundwater vulnerability for pollution using DRASTIC index, young alluvial plain, Western Nile Delta, Egypt. Arab J Geosci 12(23):727. https://doi.org/10.1007/s12517-019-4883-1

  139. Salem ZE-S, Osman O (2019). Use of one-dimensional subsurface temperature profiles to characterize the groundwater flow system in the northwestern part of the Nile Delta, Egypt. In: Negm AM (ed) Groundwater in the Nile Delta. Springer International Publishing, pp 387–423. https://doi.org/10.1007/698_2018_248

  140. Salman SA, Arauzo M, Elnazer AA (2019) Groundwater quality and vulnerability assessment in west Luxor Governorate, Egypt. Groundwater Sustain Develop 8:271–280. https://doi.org/10.1016/j.gsd.2018.11.009

    Article  Google Scholar 

  141. Scholze O, Schneider W, Hillmer G (2003) Protection of the groundwater resources of Metropolis Cebu (Philippines) in consideration of saltwater intrusion into the coastal aquifer. Geochemical processes in soil and groundwater: measurement, modelling, upscaling. GeoProc2002 Conference, Bremen, Germany, 4–7 March 2002, pp 93–103

    Google Scholar 

  142. Sefelnasr A, Sherif M (2014) Impacts of seawater rise on seawater intrusion in the Nile Delta aquifer, Egypt. Groundwater 52(2):264–276. https://doi.org/10.1111/gwat.12058

    Article  Google Scholar 

  143. Seleem AS, Kaiser MF, Athelib HS (2018) Data integration to assess aquifer vulnerability potential to pollution around Ismailia canal using remote sensing and GIS techniques. J Geol Geophys

    Google Scholar 

  144. Serag El Din HM (1989) Geological, hydrochemical and hydrological studies on the Nile Delta quaternary aquifer [Ph.D. Thesis]. Faculty of Science, Mansoura University Mansoura, Egypt

    Google Scholar 

  145. Sharaky AM, Atta SA, El Hassanein AS, Khallaf KMA (2007) Hydrogeochemistry of groundwater in the Western Nile Delta aquifers, Egypt. 2nd Int Conf Geol Tethys 19(21):1–23

    Google Scholar 

  146. Sherif M (1999) Nile delta aquifer in Egypt. In: Seawater intrusion in coastal aquifers—concepts, methods and practices. Springer, pp 559–590. https://doi.org/10.1007/978-94-017-2969-7_17

  147. Sherif M (2003) Assessment, modeling and management of seawater intrusion in the Nile delta aquifer. Tecnología De La Intrusión De Agua De Mar En Acuíferos Costeros: PAÍSES MEDITERRÁNEOS\copyright IGME, Madrid

    Google Scholar 

  148. Sherif M, Sefelnasr A, Javadi A (2012) Incorporating the concept of equivalent freshwater head in successive horizontal simulations of seawater intrusion in the Nile Delta aquifer, Egypt. J Hydrol 464:186–198. https://doi.org/10.1016/j.jhydrol.2012.07.007

  149. Sherif MM, Al-Rashed MF (2001) Vertical and horizontal simulation of seawater intrusion in the Nile Delta aquifer. In: First international conference on saltwater intrusion and coastal aquifers, monitoring, modeling, and management, Essaouira, Morocco, pp 23–25

    Google Scholar 

  150. Sherif MM, Singh VP (1999) Effect of climate change on sea water intrusion in coastal aquifers. Hydrol Process 13(8):1277–1287. https://doi.org/10.1002/(SICI)1099-1085(19990615)13:8%3C1277::AID-HYP765%3E3.0.CO;2-W

    Article  Google Scholar 

  151. Sherif MM, Singh VP, Amer AM (1988) A two-dimensional finite element model for dispersion (2D-FED) in coastal aquifers. J Hydrol 103(1–2):11–36. https://doi.org/10.1016/0022-1694(88)90003-0

    Article  Google Scholar 

  152. Sobeih MM, El-Arabi NE, Helal EEDY, Awad BS (2017) Management of water resources to control groundwater levels in the southern area of the western Nile delta, Egypt. Water Sci 31(2):137–150. https://doi.org/10.1016/j.wsj.2017.09.001

  153. Soliman M, El-Mongy A, Talaat M, Hassan A, Maniak U (1991) Groundwater quality model with applications to various aquifers. Environ Geol Water Sci 17(3):201–208

    Article  Google Scholar 

  154. Soliman SM, Fattah MK, Ahmed MG (2014) Sustainable development and management of water resources in west Nile delta, Egypt. Int J Sci Eng Res 5(11):1296–1310

    Google Scholar 

  155. Sriapai T, Walsri C, Phueakphum D, Fuenkajorn K (2012) Physical model simulations of seawater intrusion in unconfined aquifer. Songklanakarin J Sci Technol 34(6)

    Google Scholar 

  156. Stempvoort DV, Ewert L, Wassenaar L (1993) Aquifer vulnerability index: a GIS-compatible method for groundwater vulnerability mapping. Can Water Resour J 18(1):25–37. https://doi.org/10.4296/cwrj1801025

    Article  Google Scholar 

  157. Taha AA, El-Mahmoudi AS, El-Haddad IM (2004) Pollution sources and related environmental impacts in the new communities southeast Nile Delta, Egypt. Emirates J Eng Res 9(1):35–49

    Google Scholar 

  158. Tesfa B (2013) Benefit of grand Ethiopian renaissance dam project (GERDP) for Sudan and Egypt. EIPSA Commun Article: Energy, Water, Environ Econ

    Google Scholar 

  159. Thirumalaivasan D, Karmegam M, Venugopal K (2003) AHP-DRASTIC: Software for specific aquifer vulnerability assessment using DRASTIC model and GIS. Environm Model Softw 18(7):645–656. https://doi.org/10.1016/S1364-8152(03)00051-3

  160. Trent VP (1991) “Drastic” mapping to determine the vulnerability of ground-water to pollution. In: Proceedings of the 1991 Georgia water resources conference, Held March 19 and 20, 1991, At the University of Georgia

    Google Scholar 

  161. Umar R, Ahmed I, Alam F (2009) Mapping groundwater vulnerable zones using modified DRASTIC approach of an alluvial aquifer in parts of Central Ganga Plain, Western Uttar Pradesh. J Geol Soc India 73(2):193–201. https://doi.org/10.1007/s12594-009-0075-z

    Article  Google Scholar 

  162. van Beynen PE, Niedzielski MA, Bialkowska-Jelinska E, Alsharif K, Matusick J (2012) Comparative study of specific groundwater vulnerability of a karst aquifer in central Florida. Appl Geogr 32(2):868–877. https://doi.org/10.1016/j.apgeog.2011.09.005

    Article  Google Scholar 

  163. Wassef R, Schüttrumpf H (2016) Impact of sea-level rise on groundwater salinity at the development area western delta, Egypt. Groundwater Sustain Dev 2–3:85–103

    Google Scholar 

  164. Werner AD, Ward JD, Morgan LK, Simmons CT, Robinson NI, Teubner MD (2012) Vulnerability indicators of sea water intrusion. Ground Water 50(1):48–58. https://doi.org/10.1111/j.1745-6584.2011.00817.x

    Article  Google Scholar 

  165. Wheeler KG, Basheer M, Mekonnen ZT, Eltoum SO, Mersha A, Abdo GM, Zagona EA, Hall JW, Dadson SJ (2016) Cooperative filling approaches for the grand Ethiopian renaissance dam. Water Int 41(4):611–634. https://doi.org/10.1111/j.1745-6584.2011.00817.x

    Article  Google Scholar 

  166. Whittington D, Waterbury J, Jeuland M (2014) The Grand Renaissance Dam and prospects for cooperation on the Eastern Nile. Water Policy 16(4):595–608. https://research.manchester.ac.uk/en/publications/the-grand-renaissance-dam-and-prospects-for-cooperation-on-the-ea

  167. Zaid SM (2006) Geo-environmental study of eastern Nile Delta, Egypt [Ph.D. Thesis]. Faculty of Science, Zagazig University, Egypt, p 339

    Google Scholar 

  168. Zarif FM, Elshenawy AM, Barseem MS, Al-Abaseiry AA, Sayed ANE (2022) Evidence of geoelectrical resistivity values on groundwater conditions in Wadi El Natrun and its vicinities, West Delta, Egypt (cases studies). Sci Rep 12(1):1–16. https://doi.org/10.1038/s41598-022-12644-0

    Article  Google Scholar 

  169. Zelenakova M, Abd-Elhamid H, Barańczuk K, Barańczuk J (2022) Assessment and adaptation to climate change and sea level rise impacts on Egypt’s northern coasts. IOP Conf Ser Mater Sci Eng 1252(1):012009. https://doi.org/10.1088/1757-899X/1252/1/012009

  170. Zhou Y, Rowe RK (2005) Modeling of clay liner desiccation. Int J Geomech 5(1):1–9. https://doi.org/10.1061/~ASCE!1532-3641~2005!5:1~1!

Download references

Acknowledgements

The authors would like to thank the STDF-Egypt for the financial support received under the framework of a project (ID#46278). This book chapter is part of a project titled “Optimal Exploitation Strategies for Sustainable Utilization of Fossil Groundwater Reserves in Egypt” funded by the Science and Technology Development Fund (STDF), Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asaad M. Armanuos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Armanuos, A.M., Emara, S.R., Shalby, A., Metwally, M.I., John, A.P., Negm, A. (2023). Groundwater in the Nile Delta Aquifer, Egypt: Assessment, Modelling and Management with Climate Change in the Core. In: Ali, S., Armanuos, A.M. (eds) Groundwater in Arid and Semi-Arid Areas. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-43348-1_11

Download citation

Publish with us

Policies and ethics