Skip to main content

Mineral Solubilization by Microorganism: Mitigating Strategy in Mineral Deficient Soil

  • Chapter
  • First Online:
Microbial Biotechnology

Abstract

Injudicious use of fertilizers, pesticides etc. in soils have posed negative impact on both productivity and environmental sustainability. Thus, there is a need to amend the soil with the help of sustainable agents like microorganism that may add to the soil fertility without posing negative impact on the plants and the soil properties. The capability of microorganisms to convert insoluble forms of mineral nutrients into easy and absorbable forms makes them very effective strategist in mineral deficient soils, this phenomenon of making minerals available in soils is referred as mineral solubilization. This strategy could also be important in enhancing crop productivity. These microorganisms could be referred as bio-agents that solubilize the fixed form of minerals into the available form. This chapter will provide brief knowledge of several mineral solubilizing microorganisms, with special emphasis on their role in enhancing plants productivity. Apart from solubilization, whether these organisms are involved in other mechanisms of regulating plants growth will also be discussed. We will try elucidating whether these microorganisms play some role under stress condition and also the mechanism by which they do so.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesemoye AO, Torbert HA, Kloepper JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M (2015) Phosphate solubilising bacteria assisted phytoremediation of metalliferous soil: a review. Biotech 5:111–121

    Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud University-Sci 26(1):1–20

    Article  Google Scholar 

  • Alqarawi AA, Abd Allah EF, Hashem A (2014) Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk. J Plant Interact 9:802–810

    Article  CAS  Google Scholar 

  • Antoun H (2012) Beneficial microorganisms for the sustainable use of phosphates in agriculture. Process Eng 46:62–67

    CAS  Google Scholar 

  • Araújo AS, Cesarz S, Leite LF, Borges CD, Tsai SM, Eisenhauer N (2013) Soil microbial properties and temporal stability in degraded and restored lands of Northeast Brazil. Soil Biol Biochem 66:175–181

    Article  CAS  Google Scholar 

  • Argelis DT, Gonzala DA, Vizcaino C, Gartia MT (1993) Biochemical mechanism of stone alteration carried out by filamentous fungi living in monuments. Biogeo Chem 19:129–147

    Google Scholar 

  • Arkipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Planta and. Soil 292:305–315

    Google Scholar 

  • Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seeds with exopolysaccharide producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fert. Soil 40:157–162

    CAS  Google Scholar 

  • Ashraf MA, Rasool M, Mirza MS (2011) Nitrogen fixation and indole acetic acid production potential of bacteria isolated from rhizosphere of sugarcane (Saccharum officinarum L.) Adv Biol Res 5(6):348–355

    CAS  Google Scholar 

  • Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 12:80–85

    Google Scholar 

  • Balogh-Brunstad Z, Keller CK, Gill RA, Bormann BT, Li CY (2008) The effect of bacteria and fungi on chemical weathering and chemical denudation fluxes in pine growth experiments. Biogeochem 88:153–167

    Article  Google Scholar 

  • Banerjee S, Palit R, Sengupta C, Standing D (2010) Stress induces phosphate solubilisation by Arthrobacter sp. and bacillus sp. isolated from tomato rhizosphere. Aust J Crop Sci 4:378–383

    CAS  Google Scholar 

  • Barker WW, Welch SA, Chu S, Banfield F (1998) Experimental observations of the effects of bacteria on aluminosilicates weathering. Am Mineral 83:1551–1563

    Article  CAS  Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soils 317:235–255

    Article  CAS  Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2002) Impact of growth stages on bacterial community structure along maize roots by metabolic and genetic fingerprinting. Appl Soil Ecol 19:135–145

    Article  Google Scholar 

  • Beneduzi A, Moreira F, Costa PB, Vargas LK, Lisboa BB, Favreto R, Baldani JI, Passaglia LMP (2013) Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the south of Brazil. Appl Soil Ecol 63:94–104

    Article  Google Scholar 

  • Boelens J, Zoutmann D, Cambell J, Verstraete W (1993) The use of bioluminescence as a reporter to study the adherence of the plant growth promoting Rhizopseudomonas 7NSK2 and ANP15 to canola roots. Can J Microbiol 39:329–334

    Article  CAS  Google Scholar 

  • Cassán F, Maiale S, Masciarelli O, Vidal A, Luna V, Ruiz O (2009) Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur J Soil Biol 45:12–19

    Article  CAS  Google Scholar 

  • Chan LC, XY G, Wong JWC (2003) Comparison of bioleaching of heavy metals from sewage sludge using iron- and sulfur-oxidizing bacteria. Adv Environmen Res 7:603–607

    Article  CAS  Google Scholar 

  • Chen YP, Rekha PD, Arunshen AB, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:3341

    Article  Google Scholar 

  • Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP, Shabala S (2007) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58:4245–4255

    Article  CAS  PubMed  Google Scholar 

  • Cho KS, Hirai M, Shoda M (1992) Degradation of hydrogen sulfide by Xanthomonas sp. strain DY44 isolated from peat. Appl Environ Microb 58(4):1183–1189

    CAS  Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974

    Article  CAS  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Change 19:292–305

    Article  Google Scholar 

  • Crowley DE (2007) Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadia J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Dordrecht, pp 169–198

    Google Scholar 

  • Daniels C, Michan C, Ramos JL (2009) New molecular tools for enhancing methane production, explaining thermodynamically limited life styles and other important biotechnological issues. Microb Biotechnol 2:533–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das SK, Mishra AK, Tindall BJ, Rainey FA, Stackerbrandt E (1996) Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. Nov., sp. nov.: analysis of phylogeny based on Chemotaxanomy on 16S ribosomal DNA sequencing. Inter J System Bacteriol 64(4):981–987

    Article  Google Scholar 

  • Defreitas JR, Germida JJ (1992) Growth promotion of winter wheat by fluorescent Pseudomonas under field conditions. Soil Biol Biochem 24:1137–1146

    Article  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    Article  CAS  PubMed  Google Scholar 

  • Dhanushkodi R, Vithal KL, Pranita B, Sajad A, Kannepalli A (2013) Mitigation of salt stress in wheat seedlings by halo-tolerant bacteria isolated from saline habitats. Springer Plus 2:6

    Article  CAS  Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36:184–189

    Article  Google Scholar 

  • Egamberdiyeva D, Hoflich G (2003) Influence of growth promoting bacteria on the growth ofwheat at different soils and temperatures. Soil Biol Biochem 35:973–978

    Article  CAS  Google Scholar 

  • Ezawa T, Smith SE, Smith FA (2002) Phosphate metabolism and transport in AM fungi. Plant Soil 244:221–230

    Article  CAS  Google Scholar 

  • Flaishman MA, Eyal ZA, Zilberstein A, Voisard C, Hass D (1996) Suppression of Septoria tritci blotch and leaf rust of wheat by recombinant cyanide producing strains of Pseudomonas putida. Mol Plant-Microbe Interact 9:642–645

    Article  CAS  Google Scholar 

  • Francis I, Holsters M, Vereecke D (2010) The gram-positive side of plant-microbe interaction. Environ Microbial 12:1–12

    Article  CAS  Google Scholar 

  • George P, Gupta A, Gopal M, Thomas L, Thomas GV (2012) Multifarious beneficial traits and plant growth promoting potential of Serratia marcescens KiSII and Enterobacter sp. RNF 267 isolated from the rhizosphere of coconut palms (Cocos nucifera L.) World J Microb Biot 29(1):109–117

    Article  CAS  Google Scholar 

  • Gond SK, Bergen MS, Torres MS, White JF, Kharwar RN (2015) Effect of bacterial endophyte on expression of defense genes in Indian popcorn against Fusarium moniliforme. Symbiosis 66:133–140

    Article  CAS  Google Scholar 

  • Gonzalez AJ, Larraburu EE, Llorente BE (2015) Azospirillum brasilense increased salt tolerance of jojoba duringin vitro rooting. Ind Crop Prod 76:41–48

    Article  CAS  Google Scholar 

  • Goswami D, Pithwa S, Dhandhukia P, Thakker JN (2014) Delineating Kocuria turfanensis 2M4 as a credible PGPR: a novel IAA producing bacteria isolated from saline desert. J Plant Interact 9:566–576

    Article  CAS  Google Scholar 

  • Grandstaff DE (1986) The dissolution rate of Forsteritic olivine from Hawaiian beach sand. In: Colman SM, Dethier DP (eds) Rates of chemical weathering of rocks and minerals. Academic Press, New York, pp 41–59

    Google Scholar 

  • Grayston SJ, Germida JJ (1991) Sulfur oxidizing bacteria as plant growth promoting rhizobacteria for Canola. Can J Microb 37:521−529

    Article  Google Scholar 

  • Gupta AK (2004) The complete technology book on biofertilizers and organic farming. National Institute of Industrial Research Press, India

    Google Scholar 

  • Hamdali H, Bouizgarne B, Hafidi M, Lebrihi A, Virolle MJ, Ouhdouch Y (2008) Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. Appl Soil Ecol 38:12–19

    Article  Google Scholar 

  • Han HS, Supanjani P, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria an mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52(3):130–136

    CAS  Google Scholar 

  • He ZL, Bian W, Zhu J (2002) Screening and identification of microorganisms capable of utilizing phosphate adsorbed by goethite. Comm Soil Sci Plant Anal 33:647–663

    Article  CAS  Google Scholar 

  • He ZL, Wu J, O’Donnell AG, Syers JK (1997) Seasonal responses in microbial biomass carbon, phosphorus and sulphur in soils under pasture. Biol Fertil Soils 24:421–428

    Article  CAS  Google Scholar 

  • Hilda R, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–359

    Article  Google Scholar 

  • Hilda R, Fraga R (2000) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech Adv 17:319–359

    Google Scholar 

  • Hoflich G, Wiehe W, Khn G (1994) Plant growth stimulation with symbiotic and associative rhizosphere microorganisms. Experientia 50:897–905

    Article  Google Scholar 

  • Hutchens SE, Valsami JE, Eldowney MS (2003) The role of heterotrophic bacteria in feldspar dissolution. Min Mag 67:1151–1170

    Article  CAS  Google Scholar 

  • Illmer PA, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol Biochem 24:389–395

    Article  Google Scholar 

  • Jain DK, Tyagi RD (1992) Leaching of heavy metals from anaerobic sewage sludge by sulfur-oxidizing bacteria. Enzym Microb Technol 14(5):376–383

    Article  CAS  Google Scholar 

  • Javed NP, Arshad M (1997) Growth promotion of two wheat cultivars by plant growth promoting rhizobacteria. Pak J Bot 29:243–248

    Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2010) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant. https://doi.org/10.1007/s1173801006049

  • Jilani G, Akram A, Ali RM, Hafeez FY, Shamsi IH, Chaudhary AN, Chaudhary AG (2007) Enhancing crop growth, nutrients availibility, economics and beneficial rhizosphere microflora through organic and biofertilizers. Ann Microbiol 7:177–183

    Google Scholar 

  • Jones DL, Shannon DV, Murphy D, Farrar J (2003) Role of dissolved organic nitrogen (DON) in soil cycling in grassland soils. Soil Biol Biochem 36:749–756

    Article  CAS  Google Scholar 

  • Katyal JL, Sharma KL, Srinivas K (1997) ISI/FAI/IFA symposium on sulphur in balanced fertilization. New Delhi, India, Proc, pp 2/1–2/11

    Google Scholar 

  • Kertesz MA, Mirleau K (2004) The role of soil microbes in plant sulphur nutrition. J Exp Bot 55:1–7

    Article  CAS  Google Scholar 

  • Khan AL, Waqas M, Kang SM (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52:689–695

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi – current perspective. Arch Agron Soil Sci 56:73–98

    Article  CAS  Google Scholar 

  • Khatibi R (2011) Using sulfur oxidizing bacteria and P solubilizing for enhancing phosphorous availability to Raphanus sativus. African J Plant Sci 5(8):430–435

    CAS  Google Scholar 

  • Kim CH, Han SH, Kim KY, Cho BH, Kim YH, Koo BS, Kim YC (2003) Cloning and expression of pyrroloquinoline quinine (PQQ) genes from a phosphate solubilizing bacterium Enterobacter intermedium. Curr Microbiol 47:457–461

    CAS  PubMed  Google Scholar 

  • Kloepper JW (2003) A review of mechanisms for plant growth promotion by PGPR. In: Reddy MS, Anandaraj M, Eapen SJ, Sarma YR, Kloepper JW (eds) Abstracts and short papers. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective 176th international PGPR workshop, 5–10 October 2003. Indian Institute of Spices Research, Calicut, pp 81–92

    Google Scholar 

  • Kloepper JW, Zablowicz RM, Tipping B, Lifshitz R (1991) Plant growth mediated by bacterial rhizosphere colonizers. In: Keister DL, Gregan B (eds) The rhizosphere and plant growth, vol 14. BARC symposium, pp 315–326

    Google Scholar 

  • Kpomblekou K, Tabatabai MA (1994) Effect of organic acids on release of phosphorus from phosphate rocks. Soil Sci 158:442–453

    Article  Google Scholar 

  • Krasilinikov NA (1957) On the role of soil micro-organism in plant nutrition. Microbiologia 26:659–672

    Google Scholar 

  • Krishnaraj PU, Khanuja SPS, Sadashivam KV (1998) Mineral phosphate solubilization (MPS) and mps genes -components in eco-friendly P fertilization. Abstracts of Indo US Workshop on Application of Biotechnology for Clean Environment and Energy, National Institute of Advanced Studies, Bangalore, p 27

    Google Scholar 

  • Kuenen JG, Beudeker RF (1982) Microbiology of Thiobacilli and other sulphur oxidising autotrophs mixotrophs and heterotrophs. In: Post Gate JP, Kelly DP (eds) Sulphur bacteria. University Press, Cambridge, pp 473–497

    Google Scholar 

  • Kumar V, Behl RK, Narula N (2001) Establishment of phosphate- solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under greenhouse conditions. Microbiol Res 156:87–93

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Narula N (1999) Solubilization of inorganic phosphates and growth mergence of wheat as affected by Azotobacter chroococcum mutants. Biol Fertil Soils 28:301–305

    Article  CAS  Google Scholar 

  • Kurek E, Ozimek E, Sobiczewski P, SÅ‚omka A, Jaroszuk-ÅšciseÅ‚ J (2013) Effect of Pseudomonas Luteola on mobilization of phosphorus and growth of young apple trees (Ligol)—pot experiment. Sci Hortic 164:270–276

    Article  CAS  Google Scholar 

  • Leifeld J (2012) How sustainable is organic farming? Agric Ecosyst Environ 150:121–122

    Article  Google Scholar 

  • Liddycoat SM, Greenberg BM, Wolyn DJ (2009) The effect of plant growth promoting rhizobacteria an asparagus seedling and germinating seeds subjected to water stress under greenhouse conditions. Can J Microbiol 55:388–394

    Article  CAS  PubMed  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Application of free living plant growth- promoting rhizobacteria. Antonie van Leewenhoek 86:1–25

    Article  CAS  Google Scholar 

  • Maliha R, Samina K, Najma A, Sadia A, Farooq L (2004) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms under in vitro conditions. Pak J BiolSci 7:187–196

    Article  Google Scholar 

  • Marulanda A, Azcon R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt stressed conditions. Planta 232:533–543

    Article  CAS  PubMed  Google Scholar 

  • McGill WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S andP through soil organic matter. Geoderma 26:267–268

    Article  CAS  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2015a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bcab.2015.08.006

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015b) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Mikhailouskaya N, Tcherhysh A (2005) K-mobilizing bacteria and their effect on wheat yield. Latnian. J Agron 8:154–157

    Google Scholar 

  • Muentz A (1890) Surla decomposition desrochesetla formation de la terre arable. C R Acad Sci 110:1370–1372

    Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bunemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg, pp 251–244

    Chapter  Google Scholar 

  • Nautiyal CS, Govindarajan R, Lavania M, Pushpangadan P (2008) Novel mechanisms of modulating natural antioxidants in functional foods: involvement of plant growth promoting rhizobacteria. J Agric Food Chem 56:4474–4481

    Article  CAS  PubMed  Google Scholar 

  • Nunes JS, Araujo ASF, Nunes LAPL, Lima LM, Carneiro RFV, Tsai SM, Salviano AAC (2012) Land degradation on soil microbial biomass and activity in Northeast Brazil. Pedosphere 22:88–95

    Article  CAS  Google Scholar 

  • Pandey A, Trivedi P, Kumar B, Palni LMS (2006) Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida isolated from a sub-alpine location in the Indian central Himalaya. Curr Microbiol 53:102–107

    Article  CAS  PubMed  Google Scholar 

  • Panhwar QA, Jusop S, Naher UA, Othman R, Razi MI (2013) Application of potential phosphate-solubilizing bacteria andorganic acids on phosphate solubilization from phosphate rock in aerobic rice. Sci World J

    Google Scholar 

  • Parul J, Khichi DS (2014) Phosphate solubilizing microorganism (PSM): an ecofriendly biofertilizer and pollution manager. J Dynamics in Agri Res 1(4):23–28

    Google Scholar 

  • Pereira SI, Castro PM (2014) Phosphate-solubilizing rhizobacteria enhance Zea mays growth in agricultural P-deficient soils. Ecol Eng 73:526–535

    Article  Google Scholar 

  • Perez-Garcia A, Romero D, de Vicente A (2011) Plant protection and growth stimulation by microorganism: biotechnological applications of bacillus in agriculture. Curr. Open. Biotechnol 22:187–193

    CAS  Google Scholar 

  • Pishchik VN, Provorov NA, Vorobyov NI, Chizevskaya EP, Safronova VI, Tuev AN, Kozhemyakov AP (2009) Interactions between plants and associated bacteria in soils contaminated with heavy metals. Microbiology 78:785–793

    Article  CAS  Google Scholar 

  • Pishchik VN, Vorobyev NJ, Chernyaeva LI, Timofeeva SV, Kazhemyakov AP, Alexeev YV (2002) Experimental and mathematical simulation of plant growth promoting rhizobacteria and plant interaction under cadmium stress. Plant Soil 243:173–186

    Article  CAS  Google Scholar 

  • Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 2012:1183–1191

    Article  CAS  Google Scholar 

  • Ramarethinam S, Chandra K (2005) Studies on the effect of potash solubilizing/mobilizing bacteria Frateuria aurantia on brinjal growth and yield. Pestol 11:35–39

    Google Scholar 

  • Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91

    Article  CAS  PubMed  Google Scholar 

  • Reitmeir RF (1951) Soil potassium. In: Norman AG (ed) Advances in agronomy II. Academic Press, New York, pp 113–164

    Google Scholar 

  • Rengel Z, Marschner P (2005) Nutrient availability and management in the rhizosphere exploiting genotypic differences. New Phytol 168:305–312

    Article  CAS  PubMed  Google Scholar 

  • Requena BN, Jimenez I, Toro M, Barea JM (1997) Interactions between plant-growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in Mediterranean semiarid ecosystems. New Phytol 136:667–677

    Article  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    Article  CAS  Google Scholar 

  • Saber K, Nahla LD, Chedly A (2005) Effect of phosphate on nodule formation and N fixation in bean. Agron Sustain Dev 25:389–393

    Article  CAS  Google Scholar 

  • Salimpour S, Khavazi K, Nadian H, Besharati H, Miransari M (2010) Enhancing phosphorous availability to canola ('Brassica napus' L.) using P solubilizing and sulfur oxidizing bacteria. Aus. J Crop Sci 4(5):330–334

    CAS  Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62:21–30

    Article  CAS  Google Scholar 

  • Sarma RK, Saikia RR (2014) Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRK21. Plant Soils 377:111–126

    Article  CAS  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    Article  CAS  PubMed  Google Scholar 

  • Scherer HW (2001) Sulphur in crop production. Eur J Agron 14:81–111

    Article  CAS  Google Scholar 

  • Schnug E, Haneklaus S (1993) Physiological backgrounds of different sulfur utilisation in Brassica napus varieties. Aspects. Appl Biol 34:235–242

    Google Scholar 

  • Sérgio A, Araújo F, Borges CD, Tsai SM, Cesarz S, Eisenhauer N (2014) Soil bacterial diversity in degraded and restored lands of Northeast Brazil. Antonie Van Leeuwenhoek 106(5):891–899

    Article  CAS  Google Scholar 

  • Sharma SB, Riyaz ZS, Mrugesh HT, Thivakaran AG (2013) Phosphate solubilizing microbes: a sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheng XF, Xia JJ, Cheng J (2006) Mutagenesis of the Bacillus edaphicus strain NBT and its effect on growth of chilli and cotton. Agric Sci Chin 37:342–349

    Google Scholar 

  • Shimaila A, Trevor C, Charles BR (2014) Glick amelioration of high salinity stress damage by plant growth promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167

    Article  CAS  Google Scholar 

  • Singh G, Biswas DR, Marwah TS (2010) Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum L.) J Plant Nutri 33:1236–1251

    Article  CAS  Google Scholar 

  • Sorokin DY, Teske A, Robertson LA, Kuenen JG (1999) Anaerobic oxidation of thiosulfate to Tetrathionate by Obligately heterotrophic bacteria, belonging to the Pseudomonas stutzeri group. Fed Eur Microb Soci Microbiol Ecol 30:113–123

    CAS  Google Scholar 

  • Srinivasarao CH, Takkar PN (1997) Evaluation of different extractants for measuring the soil potassium and determination of critical levels for plant available K in smectitic soils for sorghum. J Indian Soc Soil Sci 45:113–119

    Google Scholar 

  • Starkey RL (1935) Isolation of some bacteria which oxidize thiosulfate. Soil Sci 39:197–219

    Article  CAS  Google Scholar 

  • Subbarao NS (1988) Phosphate solubilizing microorganism. In: Biofertilizer in agriculture and forestry regional Biofert. Dev. Centre, Hissar, India, pp 133–142

    Google Scholar 

  • Swaby R, Sperber JI (1959) Phosphate dissolving microorganisms in the Rhizosphere of legume nutrition of legumes; Proc. Univ. Nottingham 5Th Easter Sch. Agril. Sci. (CSIRO Adelaide). Soils Fert 22(286):289–294

    Google Scholar 

  • Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annum L.) Can J Microbiol 53:1195–1202

    Article  CAS  PubMed  Google Scholar 

  • Tandon HLS (1989) Sulphur fertilizers for the tropics. Proc TSI-FAI symp Sulphur in Indian agriculture, New Delhi. pp S IV/2(1–11)

    Google Scholar 

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Wackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    Article  CAS  PubMed  Google Scholar 

  • Trivedi P, Sa T (2008) Pseudomonas corrugate (NRRL B-30409) mutants increased phosphate solubilisation, organic acid production, and plant growth at lower temperatures. Curr Microbiol 56:140–144

    Article  CAS  PubMed  Google Scholar 

  • Trolove SN, Hedley MJ, Kirk GJD, Bolan NS, Loganathan P (2003) Progress in selected areas of rhizosphere research on P acquisition. Aust J Soil Res 41:471–499

    Article  Google Scholar 

  • Ullaman WJ, Kirchman DL, Welch WA (1996) Laboratory evidence by microbially mediated silicate mineral dissolution in nature. Chem Geol 132:11–17

    Article  Google Scholar 

  • Vale M, Seldin L, Araujo FF, Linna R (2010) Plant growth promoting rhizobacteria; fundamentals and applications. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin, pp 21–43

    Google Scholar 

  • Van Schöll, Kuyper TW, Smits MM, Landeweert R, Hoffland E, van Breemen N (2008) Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles. Plant Soil 303:35–40

    Article  CAS  Google Scholar 

  • Vandevivere P, Welch SA, Ullman WJ, Kirchman DJ (1994) Enhanced dissolution of silicate minerals by bacteria at near neutral pH. Microb Ecol 27:241–251

    Article  CAS  PubMed  Google Scholar 

  • Vassileva M, Azcon R, Barea JM, Vasslev N (2000) Rock phosphate solubilization by free and encapsulated cells of Yarowiali polytica. Process Biochem 35:6937

    Article  Google Scholar 

  • Vazquez P, Holguin G, Puente M, Lopez-cortes A, Bashan Y (2000) Phosphate solubilizing microorganisms associated with the rhizosphere of mangroves in a semi-arid coastal lagoon. Biol Fertil Soils 30:460–468

    Article  CAS  Google Scholar 

  • Venkateswarlu B, Singh AK, Srinivasa R, Rao CG, Kumar KA, Virmani SM (2012) Natural resource management for accelerating agricultural productivity. Studium Press (India) Pvt. Ltd, New Delhi, p 234

    Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Jaiswal DK (2014) Evaluation of plant growth promoting activities of microbial strains and their effect on growth and yield of chickpea (Cicer arietinum L.) in India. Soil Biol Biochem 70:33–37

    Article  CAS  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Kumar A (2013) Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer aritenium L.) under sustainable agriculture. Ecol Eng 51:282–286

    Article  Google Scholar 

  • Vidyalakshmi R, Sridar R (2007) Isolation and characterization of sulphur oxidizing bacteria. J Cult Coll 5:73–77

    Google Scholar 

  • Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium sp. closely associated with wheat roots. Biol Fertil Soils 40:36–43

    Article  CAS  Google Scholar 

  • Wang S, Huijun W, Junqing Q, Lingli M, Jun L, Yanfei X, Xuewen G (2009) Molecular mechanism of plant growth promotion and induced systemic resistance to tobacco mosaic virus by bacillus spp. J Microbiol Biotechnol 19(10):1250–1258

    Article  CAS  PubMed  Google Scholar 

  • Wani PA, Zaidi A, Khan AA, Khan MS (2005) Effect of phorate on phosphate solubilization and indole acetic acid (IAA) releasing potentials of rhizospheric microorganisms. Annals Plant Protection Sci 13:139–144

    Google Scholar 

  • Weed SB, Davey CB, Cook MG (1969) Weathering of mica by fungi. Soil Sci Soc Am 33:702–706

    Article  CAS  Google Scholar 

  • Welch SA, Ullman WJ (1993) The effect of organic acids on plagioclase dissolution rates and stoichiometry. Geochim Cosmochim Acta 57:2725–2736

    Article  CAS  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate solubilizing fungi. Adv Agron 69:99–151

    Article  CAS  Google Scholar 

  • Xie JC (1998) Present situation and prospects for the world’s fertilizer use. Plant Nutri Fertil Sci 4:321–330

    Google Scholar 

  • Yahya A, Azawi SKA (1998) Occurrence of phosphate solubilizing bacteria in some Iranian soils. Plant Soil 117:135–141

    Article  Google Scholar 

  • Zaidi A, Khan MS, Aamil M (2004) Bioassociative effect of rhizospheric microorganisms on growth, yield, and nutrient uptake of green gram. J Plant Nutr 27:601–612

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M, Wani PA (2009) Recent advances in plant growth promotion by phosphate-solubilizing microbes. In: Microbial strategies for crop improvement. Springer, Berlin/Heidelberg, pp 23–50

    Chapter  Google Scholar 

  • Zaïdi I, Ebel C, Touzri M, Herzog E, Evrard JL, Schmit AC et al (2010) TMKP1 is a novel wheat stress responsive MAP kinase phosphatase localized in the nucleus. Plant Mol Biol 73:325–338

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Parè W (2008) Soil bacteria confer plant salt tolerance by tissue specific regulation of the sodium transporter HKT1. Mol Plant Microbe In 21:737–744

    Article  CAS  Google Scholar 

  • Zhang H, Murzello C, Sun Y, KimSeongMi XX, Jeter RM, Zak JC, Dowd SE, Paré PW (2010) Choline and osmotic stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant Microbe In 23:1097–1104

    Article  CAS  Google Scholar 

  • Zhou K, Binkley D, Doxtader KG (1992) A new method for estimating gross phosphorus mineralization and immobilization rates in soils. Plant Soil 147:243–250

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gausiya Bashri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bashri, G., Patel, A., Singh, R., Parihar, P., Prasad, S.M. (2017). Mineral Solubilization by Microorganism: Mitigating Strategy in Mineral Deficient Soil. In: Patra, J., Vishnuprasad, C., Das, G. (eds) Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-6847-8_12

Download citation

Publish with us

Policies and ethics