Skip to main content

Advertisement

Log in

Lead-contaminated soils with contrasting texture remediated with phosphate: chemical fractionation and chloropyromorphite stability

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Pb can be stabilized in soil as Pb-P mineral. The aims of this study were to access the distribution of Pb in organic and mineral fractions of contrasting texture of soil Pb-contaminated and remediated with P and Cl and to evaluate the stability of chloropyromorphite in these soils. A clay loam Oxisol (sandstone) and a clayey Ultisol (basalt) were used in a factorial experiment, with three replications: two soils, two Pb contamination levels, two soil pH values, and four P doses. The Pb concentrations were determined in seven soil phases. Release kinetics of Pb were performed with 0.1 mol L−1 pH 2.5 citric acid. The transfer of soil Pb to chloropyromorphite was dependent on the level of contamination in the clay loam Oxisol. In the lowest P dose (molar ratios P:Pb 3:5), the main source was the Pb complexed in the organic matter and in the highest P dose (molar ratios P:Pb 12:5) was the Pb adsorbed by inner sphere in gibbsite and kaolinite. The release of Pb in the citric acid was dependent on the texture and mineralogy of the soils. Pb recovery applied to the clay loam Oxisol was around 100% (biphasic kinetic), while for the clayey Ultisol, the recovery ranged from 43 to 52% (single-phase kinetic). Remediation of Pb-contaminated soils with P and Cl is more efficient in clayey and oxidic soils since chloropyromorphite formation is faster and its solubilization is slower, an important combination in environmental terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alleoni, L. R. F., Mello, J. W. V., & Rocha, W. S. D. (2009). Electrochemistry, adsorption and ion exchange of soil. In V. F. Melo & L. R. F. Alleoni (Eds.), Soil chemistry and mineralogy (pp. 70–129). Viçosa: Sociedade Brasileira de Ciência do Solo.

    Google Scholar 

  • Austruy, A., Shahid, M., Xiong, T., Castrec, M., Payre, V., Niazi, N. K., Sabir, M., & Dumat, C. (2014). Mechanisms of metal-phosphates formation in the rhizosphere soils of pea and tomato: environmental and sanitary consequences. Journal of Soils and Sediments, 14, 666–678. https://doi.org/10.1007/s11368-014-0862-z.

    Article  CAS  Google Scholar 

  • Borges, E.A., Loss, A., Silva, E.E., Souza, S.R., Fernandes, M.S., 2009. Ammonium absorption kinetics and proton efflux in corn varieties. Semina 30, 513–526.

  • Bosso, S. T., Enzweiler, J., & Angélica, R. S. (2008). Lead bioaccessibility in soil and mine wastes after immobilization with phosphate. Water, Air, and Soil Pollution, 195, 257–273. https://doi.org/10.1007/s11270-008-9744-6.

    Article  CAS  Google Scholar 

  • Buschle, B. N., Palmeiro, J. K., Sade, Y. B., Melo, V. F., Andrade, M. G., & Batista, A. H. (2010). Lead release kinetics of soils from heavy metal mining area. Revista Brasileira de Ciencia do Solo, 34, 1864–1874. https://doi.org/10.1590/S0100-06832010000600010.

    Article  Google Scholar 

  • Chaves, E., Pedron, F. A., Melo, V. F., & Dalmolin, R. S. D. (2015). K mineral reserve by different methods in subtropical Ultisols. Revista Brasileira de Ciencia do Solo, 39, 1088–1099. https://doi.org/10.1590/01000683rbcs20140670.

    Article  CAS  Google Scholar 

  • Debela, F., Arocena, J. M., Thring, R. W., & Whitcombe, T. (2010). Organic acid-induced release of lead from pyromorphite and its relevance to reclamation of Pb-contaminated soils. Chemosphere, 80, 450–456. https://doi.org/10.1016/j.chemosphere.2010.04.025.

    Article  CAS  Google Scholar 

  • Duarte, A. P., Melo, V. F., Brown, G. B., & Pauletti, V. (2012). Changes in the forms of lead and manganese in soils by passage through the gut of the tropical endogeic earthworm (Pontoscolex corethrurus). European Journal of Soil Biology, 53, 32–39. https://doi.org/10.1016/j.ejsobi.2012.08.004.

    Article  CAS  Google Scholar 

  • Gu, X., Sun, J., & Evans, L. J. (2014). The development of a multi-surface soil speciation model for Cd (II) and Pb (II): Comparison of two approaches for metal adsorption to clay fractions. Applied Geochemistry, 47, 99–108. https://doi.org/10.1016/j.apgeochem.2014.05.014.

    Article  CAS  Google Scholar 

  • Hashimoto, Y., Takaoka, M., Oshita, K., & Tanida, H. (2009). Incomplete transformations of Pb to pyromorphite by phosphate-induced immobilization investigated by X-ray absorption fine structure (XAFS) spectroscopy. Chemosphere, 76, 616–622. https://doi.org/10.1016/j.chemosphere.2009.04.049.

    Article  CAS  Google Scholar 

  • Hettiarachchi, G., & Pierzynski, G. (2000). The use of phosphorus and other soil amendments for in situ stabilization of soil lead. In Proceedings of the 2000 Conference on Hazardous Waste Research (pp. 125–133).

    Google Scholar 

  • Kahkha, M. R., Bagheri, S., Noori, R., Piri, J., & Javan, S. (2017). Examining total concentration and sequential extraction of heavy metals in agricultural soil and wheat. Polish Journal of Environmetal Studies, 26, 2021–2028. https://doi.org/10.15244/pjoes/67658.

    Article  CAS  Google Scholar 

  • Karna, R., Noerpel, M., Luxton, T., & Scheckel, K. (2018). Point of zero charge: role in pyromorphite formation and bioaccessibility of lead and arsenic in phosphate-amended soils. Soil System, 2, 1–22. https://doi.org/10.3390/soilsystems2020022.

    Article  CAS  Google Scholar 

  • Koo, B.-K., Chang, A. C., Crowley, D. E., & Page, A. L. (2006). Characterization of organic acids recovered from rhizosphere of corn grown on biosolids-treated medium. Communications in Soil Science and Plant Analysis, 37, 871–887. https://doi.org/10.1080/00103620600564158.

    Article  CAS  Google Scholar 

  • Lindsay, W. L. (1979). Chemical equilibria in soils. New York: John Wiley and Sons.

    Google Scholar 

  • Ma, L., Xu, R., & Jiang, J. (2010). Adsorption and desorption of Cu(II) and Pb(II) in paddy soils cultivated for various years in the subtropical China. Journal of Environmental Sciences, 22, 689–695. https://doi.org/10.1016/S1001-0742(09)60164-9.

    Article  CAS  Google Scholar 

  • Melo, É. E. C., Nascimento, C. W. A., Santos, A. C. Q., & Silva, A. S. (2008). Availability and fractionation of Cd, Pb, Cu and Zn as a function of pH and soil incubation time. Ciencia e Agrotecnologia, 32, 776–784. https://doi.org/10.1590/S1413-70542008000300011.

    Article  Google Scholar 

  • Melo, V. F., Corrêa, G. F., Ribeiro, A. N., & Maschio, P. A. (2005). Potassium and magnesium release kinetics by the clay fraction minerals of Triangulo Mineiro soils. Revista Brasileira de Ciencia do Solo, 29, 533–545. https://doi.org/10.1590/S0100-06832005000400006.

    Article  CAS  Google Scholar 

  • Pontoni, D. R., Melo, V. F., Stipp, R. D., Borgo, J. D. H., & Bonfleur, E. J. (2020). Integrated assessment of the liquid and solid phases of lead-contaminated soils remediated with phosphate. Geoderma, 360, 113993. https://doi.org/10.1016/j.geoderma.2019.113993.

    Article  CAS  Google Scholar 

  • Ryan, J. A., Zhang, P., Hesterberg, D., Chou, J., & Sayers, D. E. (2001). Formation of chloropyromorphite in a lead-contaminated soil amended with hydroxyapatite. Environmental Science & Technology, 35, 3798–3803. https://doi.org/10.1021/es010634l.

    Article  CAS  Google Scholar 

  • Salman, S., Abu El Ella, E., & Elnazer, A. (2018). Sequential extraction of some heavy metals in Southwest Giza Soil, Egypt. Egyptian Journal of Chemistry, 61, 785–797. https://doi.org/10.21608/ejchem.2018.3180.1271.

    Article  Google Scholar 

  • Santos, S.R., Silva, E.B., Alleoni, L.R.F., Grazziotti, P.H., 2017. Citric acid influence on soil phosphorus availability. J Plant Nutrition 40, 2138–2145.

  • Scheckel, K. G., & Ryan, J. A. (2002). Effects of aging and pH on dissolution kinetics and stability of chloropyromorphite. Environmental Science & Technology, 36, 2198–2204. https://doi.org/10.1021/es015803g.

    Article  CAS  Google Scholar 

  • Schwertmann, U., & Taylor, R. M. (1989). Iron oxides. In J. B. Dixon & S. B. Weed (Eds.), Minerals in soil environments (pp. 379–438). Madison: Soil Science Society of America.

    Google Scholar 

  • Seshadri, B., Bolan, N. S., Choppala, G., Kunhikrishnan, A., Sanderson, P., Wang, H., Currie, L. D., Tsang, D. C. W., Ok, Y. S., & Kim, G. (2017). Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil. Chemosphere, 184, 197–206. https://doi.org/10.1016/j.chemosphere.2017.05.172.

    Article  CAS  Google Scholar 

  • Sobrinho, N. M. B. A., Barra, C., & Lã, O. (2009). Heavy metal chemistry in soil. In V. F. Melo & L. R. F. Alleoni (Eds.), Soil chemistry and mineralogy (pp. 249–312). Viçosa: Sociedade Brasileira de Ciência do Solo.

    Google Scholar 

  • Tarì, G., Bobos, I., Gomes, C. S. F., & Ferreira, J. M. F. (1999). Modification of surface charge properties during kaolinite to halloysite-7Å transformation. Journal of Colloid and Interface Science, 210, 360–366. https://doi.org/10.1006/jcis.1998.5917.

    Article  Google Scholar 

  • Xie, L., & Giammar, D. E. (2007). Equilibrium solubility and dissolution rate of the lead phosphate chloropyromorphite. Environmental Science & Technology, 41, 8050–8055. https://doi.org/10.1021/es071517e.

    Article  CAS  Google Scholar 

  • Wei, J., Duan, M., Li, Y., Nwankwegu, A. S., Ji, Y., & Zhang, J. (2019). Concentration and pollution assessment of heavy metals within surface sediments of the Raohe Basin, China. Scientific Reports, 9, 13100. https://doi.org/10.1038/s41598-019-49724-7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vander Freitas Melo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pontoni, D.R., Melo, V.F., Stripp, R.D. et al. Lead-contaminated soils with contrasting texture remediated with phosphate: chemical fractionation and chloropyromorphite stability. Environ Monit Assess 192, 327 (2020). https://doi.org/10.1007/s10661-020-08256-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08256-8

Keywords

Navigation