Skip to main content
Log in

Microbial diversity assessment of polychlorinated biphenyl–contaminated soils and the biostimulation and bioaugmentation processes

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The aim of this study was to know the biodiversity of total microorganisms contained in two polychlorinated biphenyl-contaminated aged soils and evaluate the strategies of bioaugmentation and biostimulation to biodegrade the biphenyls. Besides, the aerobic cultivable microorganisms were isolated and their capacity to biodegrade a commercial mixture of six congeners of biphenyls was evaluated. Biodiversity of contaminated soils was dominated by Actinobacteria (42.79%) and Firmicutes (42.32%) phyla, and others in smaller proportions such as Proteobacteria, Gemmatimonadetes, Chloroflexi, and Bacteroidetes. At the genus level, the majority of the population did not exceed 7% of relative abundance, including Bacillus, Achromobacter, Clostridium, and Pontibacter. Furthermore, four autochthonous bacterial cultures were possible isolates from the soils, which were identified by partial sequencing of the 16S rRNA gene, as Bacillus sp., Achromobacter sp., Pseudomonas stutzeri, and Bacillus subtilis, which were used for the bioaugmentation process. The bioaugmentation and biostimulation strategies achieved a biodegradation of about 60% of both soils after 8 weeks of the process; also, the four isolates were used as mixed culture to biodegrade a commercial mix of six polychlorinated biphenyl congeners; after 4 weeks of incubation, the concentration decreased from 0.5 mg/L to 0.23 mg/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed, M., & Focht, D. D. (1973). Degradation of polychlorinated biphenyls by two species of Achromobacter. Canadian Journal of Microbiology, 19(1), 47–52.

    Article  CAS  Google Scholar 

  • Al-Amoudi, S., Razali, R., Essack, M., Amini, M. S., Bougouffa, S., Archer, J. A., Lafi, F. F., & Bajic, V. B. (2016). Metagenomics as a preliminary screen for antimicrobial bioprospecting. Gene, 594(2), 248–258.

    Article  CAS  Google Scholar 

  • Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic and available form of phosphorus in soil. Soil Science., 59(1), 360–361.

    Article  Google Scholar 

  • Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J., & Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336.

    Article  CAS  Google Scholar 

  • Chen, F., Hao, S., Qu, J., Ma, J., & Zhang, S. (2015). Enhanced biodegradation of polychlorinated biphenyls by defined bacteria-yeast consortium. Annals of Microbiology, 65(4), 1847–1854.

    Article  CAS  Google Scholar 

  • Correa, P. A., Lin, L., Just, C. L., Hu, D., Hornbuckle, K. C., Schnoor, J. L., & Van Aken, B. (2010). The effects of individual PCB congeners on the soil bacterial community structure and the abundance of biphenyl dioxygenase genes. Environment International, 36(8), 901–906.

    Article  CAS  Google Scholar 

  • De, J., Ramaiah, N., & Sarkar, A. (2006). Aerobic degradation of highly chlorinated polychlorobiphenyls by a marine bacterium, Pseudomonas CH07. World Journal of Microbiology and Biotechnology, 22(12), 1321–1327.

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo, M., Reich, P. B., Khachane, A. N., Campbell, C. D., Thomas, N., Freitag, T. E., Al-Soud, W. A., Sørensen, S., Bardgett, R. D., & Singh, B. K. (2017). It is elemental: soil nutrient stoichiometry drives bacterial diversity. Environmental Microbiology, 19(3), 1176–1188.

    Article  CAS  Google Scholar 

  • Dubey, S. K., Tripathi, A. K., & Upadhyay, S. N. (2006). Exploration of soil bacterial communities for their potential as bioresource. Bioresource Technology, 97(17), 2217–2224.

    Article  CAS  Google Scholar 

  • Dudasova, H., Derco, J., Sumegova, L., Dercova, K., & Laszlova, K. (2017). Removal of polychlorinated biphenyl congeners in mixture Delor 103 from wastewater by ozonation vs/and biological method. Journal of Hazardous Materials, 321, 54–61.

    Article  CAS  Google Scholar 

  • Dudášová, H., Lukáčová, L., Murínová, S., Puškárová, A., Pangallo, D., & Dercová, K. (2012). Bacterial strains isolated from PCB-contaminated sediments and their use for bioaugmentation strategy in microcosms. Journal of Basic Microbiology, 54(4), 253–260.

    Article  CAS  Google Scholar 

  • Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19), 2460–2461.

    Article  CAS  Google Scholar 

  • Egorova, D. O., Demakov, V. A., & Plotnikova, E. G. (2011). Destruction of mixture of tri-hexa-chlorinated biphenyls by Rhodococcus genus strains. Applied Biochemistry and Microbiology, 47(6), 599–606.

    Article  CAS  Google Scholar 

  • Fagervold, S. K., Watts, J. E., May, H. D., & Sowers, K. R. (2011). Effects of bioaugmentation on indigenous PCB dechlorinating activity in sediment microcosms. Water Research, 45(13), 3899–3907.

    Article  CAS  Google Scholar 

  • Faroon, O., Keith, L., Smith-Simon, C., & De Rosa, C. (2003). Polychlorinated biphenyls: human health aspects. In Concise International Chemical Assessment Document 55, (pp. 1-58). World Health Organization.

  • Fava, F., Bertin, L., Fedi, S., & Zannon, D. (2003). Methyl-beta-cyclodextrin enhanced solubilization and aerobic biodegradation of polychlorinated biphenyls in two aged-contaminated soils. Biotechnology and Bioengineering, 81(4), 381–390.

    Article  CAS  Google Scholar 

  • Fernández Linares, L. C., Rojas Avelizapa, N. G., Roldán Carrillo, T.G., Ramírez Islas, M.E., Zegarra Martínez, H. G., Uribe Hernández, R., & Arce Ortega, J. M. (2006). Manual de técnicas de análisis de suelos aplicadas a la remediación de sitios contaminados. Secretaría de Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología, Instituto Mexicano del Petróleo. México.

  • Field, J. A., & Sierra-Alvarez, R. (2008). Microbial transformation and degradation of polychlorinated biphenyls. Environmental Pollution, 155(1), 1–12.

    Article  CAS  Google Scholar 

  • Fierer, N., Hamady, M., Lauber, C. L., & Knight, R. (2008). The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proceedings of the National Academy of Sciences of the United States, 105(46), 17994–17999.

    Article  CAS  Google Scholar 

  • Hatamian-Zarmi, A., Shojaosadati, S. A., Vasheghani-Farahani, E., Hosseinkhani, E., & Emamzadeh, A. (2009). Extensive biodegradation of higly chlorinated biphenyl and Aroclor 1242 by Pseudomonas aeruginosa TMU56 isolated from contaminated soils. International Biodeterioration and Biodegradation, 63(6), 788–794.

    Article  CAS  Google Scholar 

  • Hembree, D. M., Smyrl, N. R., Davis, W. E., & Williams, D. M. (1993). Isomeric characterization of polychlorinated biphenyls using gas chromatography-Fourier transform infrared/gas chromatography-mass spectrometry. Analyst, 118(3), 249–252.

    Article  CAS  Google Scholar 

  • Hong, Q., Dong, X., He, L., Jiang, X., & Li, S. (2009). Isolation of a biphenyl-degrading bacterium, Achromobacter sp. BP3, and cloning of the bph gene cluster. International Biodeterioration and Biodegradation, 63(4), 365–370.

    Article  CAS  Google Scholar 

  • Kjeldahl, J. (1883). Neue Methode zur bestimmung des stickstoffs in organischen Körpern. Fresenius Journal of Analytical Chemistry, 22(1), 366–382.

    Article  Google Scholar 

  • Lehtinen, T., Mikkonen, A., Sigfusson, B., Ólafsdóttir, K., Ragnarsdóttir, K. V., & Guicharnaud, R. (2014). Bioremediation trial on aged PCB-polluted soils—a bench study in Iceland. Environmental Science and Pollution Research, 21(3), 1759–1768.

    Article  CAS  Google Scholar 

  • Lunt, D., & Evans, W. C. (1970). The microbial metabolism of biphenyl. Biochemical Journal, 118(3), 54–55.

    Article  Google Scholar 

  • Luo, W., D'Angelo, E. M., & Coyne, M. (2007). Plant secondary metabolites, biphenyl, and hydroxypropyl-beta-cyclodextrin effects on aerobic polychlorinated biphenyl removal and microbial community structure in soils. Soil Biology and Biochemistry, 39(3), 735–743.

    Article  CAS  Google Scholar 

  • Macedo, A. J., Timmis, K. N., & Abraham, W. R. (2007). Widespread capacity to metabolize polychlorinated biphenyls by diverse microbial communities in soils with no significant exposure to PCB contamination. Environmental Miicrobiology, 9(8), 1890–1897.

    Article  CAS  Google Scholar 

  • Mackova, M., Uhlik,O., Lovecka, P., Viktorova, J., Demnerova, K., Sylvestre, M., & Macek, T. (2010). Bacterial degradation of polychlorinated biphenyls. Geomicrobiology. Molecular and Environmental Perspective. 347–366.

  • Manickam, N., Singh, N. K., Bajaj, A., Kumar, R. M., Kaur, G., Kaur, N., Bala, M., Kumar, A., & Mayilraj, S. (2014). Bacillus mesophilum sp. nov., strain IITR-54T, a novel 4-chlorobiphenyl dechlorinating bacterium. Archives of Microbiology, 196(7), 517–523.

    Article  CAS  Google Scholar 

  • Matturro, B., Ubaldi, C., Grenni, P., Caracciolo, A. B., & Rossetti, S. (2015). Polychlorinated biphenyl (PCB) anaerobic degradation in marine sediments: microcosm study and role of autochthonous microbial communities. Environmental Science and Pollution Research, 23(13), 12613–12623.

    Article  CAS  Google Scholar 

  • Murínová, S., Dercová, K., & Dudášová, H. (2014). Degradation of polychlorinated biphenyls (PCBs) by four bacterial isolates obtained from the PCB-contaminated soil and PCB-contaminated sediment. International Biodeterioration and Biodegradation, 91, 52–59.

    Article  CAS  Google Scholar 

  • Passatore, L., Rossetti, S., Juwarkar, A. A., & Massacci, A. (2014). Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives. Journal of Hazardous Materials, 278, 189–202.

    Article  CAS  Google Scholar 

  • Petric, I., Hrsak, D., Fingler, S., Udikovic-Kolić, N., Bru, D., & Martin-Laurent, F. (2011). Insight in the PCB-degrading functional community in long term contaminated soil under bioremediation. Journal of Soils and Sediments, 11(2), 290–300.

    Article  CAS  Google Scholar 

  • Petrik, J., Drobna, B., Pavuk, M., Jursa, S., Wimmerova, S., & Chovancova, J. (2006). Serum PCBs and organochlorine pesticides in Slovakia: age, gender, and residence as determinants of organochlorine concentrations. Chemosphere, 65(3), 410–418.

    Article  CAS  Google Scholar 

  • Pieper, D. H. (2005). Aerobic degradation of polychlorinated biphenyls. Applied Microbiology and Biotechnology, 67, 170–191.

    Article  CAS  Google Scholar 

  • Qian, Y., Meng, G., Huang, Q., Zhu, C., Huang, Z., Sun, K., & Chen, B. (2014). Flexible membranes of Ag-nanosheet-grafted polyamide-nanofibers as effective 3D SERS substrates. Nanoscale, 6(9), 4781–4788.

    Article  CAS  Google Scholar 

  • Romero-Torres, T., Cortinas de Nava, C., & Gutiérrez-Avedoy V. (2009) Diagnóstico nacional sobre la situación de los contaminantes orgánicos persistentes en México. Secretaría de Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología.

  • Sharma, J. K., Gautam, R. K., Nanekar, S. V., Weber, R., Singh, B. K., Singh, S. K., & Juwarkar, A. A. (2017). Advances and perspective in bioremediation of polychlorinated biphenyl-contaminated soils. Environmental Science and Pollution Research, 17, 16355–16375.

    Google Scholar 

  • Skaare, J., Larsen, H. J., Lie, E., Bernhoft, A., Derocher, A. E., & Norstrom, R. (2012). Ecological risk assessment of persistent organic pollutants in the arctic. Toxicology, 181, 193–197.

    Google Scholar 

  • Stella, T., Covino, S., Burianová, E., Filipová, A., Křesinová, Z., Voříšková, J., Větrovský, T., Baldrian, P., & Cajthaml, T. (2015). Chemical and microbiological characterization of an aged PCB-contaminated soil. Science of Total Environmental, 533, 177–186.

    Article  CAS  Google Scholar 

  • Stella, T., Covino, S., Čvančarová, M., Filipová, A., Petruccioli, M., D’Annibale, A., & Cajthaml, T. (2017). Bioremediation of long-term PCB-contaminated soil by white-rot fungi. Journal of Hazardous Materials, 324, 701–710.

    Article  CAS  Google Scholar 

  • Su, X., Zhang, Q., Hu, J., Hashmi, M. Z., Ding, L., & Shen, C. (2015). Enhanced degradation of biphenyl from PCB-contaminated sediments: the impact of extracellular organic matter from Micrococcus luteus. Applied Microbiology and Biotechnology, 99(4), 1989–2000.

    Article  CAS  Google Scholar 

  • Tandlich, R., Brežná, B., & Dercová, K. (2001). The effect of terpenes on the biodegradation of polychlorinated biphenyls by Pseudomonas stutzeri. Chemosphere, 44(7), 1547–1555.

    Article  CAS  Google Scholar 

  • Tang, X., Qiao, J., Chen, C., Chen, L., Yu, C., Shen, C., & Chen, Y. (2013). Bacterial communities of polychlorinated biphenyls polluted soil around an e-waste recycling workshop. Soil and Sediment Contamination: An International Journal, 22(5), 562–573.

    Article  CAS  Google Scholar 

  • Tu, C., Teng, Y., Luo, Y., Li, X., Sun, X., Li, Z., & Christie, P. (2011). Potential for biodegradation of polychlorinated biphenyls (PCBs) by Sinorhizobium meliloti. Journal of Hazardous Materials, 186(2), 1438–1444.

    Article  CAS  Google Scholar 

  • Vrana, B., Dercova, K., Baláž, Š., & Ševčíková, A. (1996). Effect of chlorobenzoates on the degradation of polychlorinated biphenyls (PCB) by Pseudomonas stutzeri. World Journal of Microbiology and Biotechnology, 12(4), 323–326.

    Article  CAS  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–37.

    Article  CAS  Google Scholar 

  • Wan, C., Du, M., Lee, D. J., Yang, X., Ma, W., & Zheng, L. (2011). Electrokinetic remediation and microbial community shift of β-cyclodextrin-dissolved petroleum hydrocarbon-contaminated soil. Applied Microbiology and Biotechnology, 89(6), 2019–2025.

    Article  CAS  Google Scholar 

  • Wardle, D. A. (2006). The influence of biotic interactions on soil biodiversity. Ecology Letters, 9, 870–886.

    Article  Google Scholar 

  • Whiteley, A. S., Jenkins, S., Waite, I., Kresoje, N., Payne, H., Mullan, B., Allcock, R., & O’Donnell, A. (2012). Microbial 16S rRNA Ion Tag and community metagenome sequencing using the Ion Torrent (PGM) Platform. Journal of Microbiological Methods, 91(1), 80–88.

    Article  CAS  Google Scholar 

  • Wiegel, J., & Wu, Q. (2000). Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiology Ecology, 32(1), 1–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Dra. Elvira Rios Leal for her support in the analysis of samples by GC-ECD, and the Biologist Alberto Piña Escobedo for his help in the massive sequencing, both from Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional.

Funding

This research was funded by CONACyT-163235 INFR-2011-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsa Cervantes-González.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cervantes-González, E., Guevara-García, M.A., García-Mena, J. et al. Microbial diversity assessment of polychlorinated biphenyl–contaminated soils and the biostimulation and bioaugmentation processes. Environ Monit Assess 191, 118 (2019). https://doi.org/10.1007/s10661-019-7227-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7227-4

Keywords

Navigation