Skip to main content
Log in

Electrokinetic remediation and microbial community shift of β-cyclodextrin-dissolved petroleum hydrocarbon-contaminated soil

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Electrokinetic (EK) migration of β-cyclodextrin (β-CD), which is inclusive of total petroleum hydrocarbon (TPH), is an economically beneficial and environmentally friendly remediation process for oil-contaminated soils. Remediation studies of oil-contaminated soils generally prepared samples using particular TPHs. This study investigates the removal of TPHs from, and electromigration of microbial cells in field samples via EK remediation. Both TPH content and soil respiration declined after the EK remediation process. The strains in the original soil sample included Bacillus sp., Sporosarcina sp., Beta proteobacterium, Streptomyces sp., Pontibacter sp., Azorhizobium sp., Taxeobacter sp., and Williamsia sp. Electromigration of microbial cells reduced the biodiversity of the microbial community in soil following EK remediation. At 200 V m−1 for 10 days, 36% TPH was removed, with a small population of microbial cells flushed out, demonstrating that EK remediation is effective for the present oil-contaminated soils collected in field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alshawabkeh AN, Yeung AT, Bricka MR (1999) Practical aspects of in-situ electrokinetic extraction. J Environ Eng 125:27–35

    Article  CAS  Google Scholar 

  • ASA (1982) Methods of soil analysis, 2nd edn. American Society of Agronomy, Madison

    Google Scholar 

  • Bardi L, Mattei A, Steffan S (2000) Hydrocarbon degradation by a soil microbial population with [beta]-cyclodextrin as surfactant to enhance bioavailability. Enzyme Microb Technol 27:709–713

    Article  CAS  Google Scholar 

  • Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  CAS  Google Scholar 

  • Cong Y, Ye Q, Wu Z (2005) Electrokinetic behavior of chlorinated phenols in soil and their electrochemical degradation. Process Saf Environ 83:178–183

    Article  CAS  Google Scholar 

  • Costarramone N, Tellier S, Astruc M (1998) Application of an electrokinetic technique to the reclamation of fluoride polluted soils: laboratory and pilot scale experiments. Waste Manage Res 16:555–563

    Article  CAS  Google Scholar 

  • DeFlaun MF, Condee CW (1997) Electrokinetic transport of bacteria. J Hazard Mater 55:263–277

    Article  CAS  Google Scholar 

  • Fenyvesi E, Gruiz K, Verstichel S (2005) Biodegradation of cyclodextrins in soil. Chemosphere 60:1001–1008

    Article  CAS  Google Scholar 

  • Giannis A, Gidarakos E (2005) Washing enhanced electrokinetic remediation for removal cadmium from real contaminated soil. J Hazard Mater 123:165–175

    Article  CAS  Google Scholar 

  • Jackman SA, Maini G, Sharman AK (2001) Electrokinetic movement and biodegradation of 2, 4-dichlorophenoxyacetic acid in silt soil. Biotechnol Bioeng 74:40–48

    Article  CAS  Google Scholar 

  • Jin S, Fallgren PH (2010) Electrically induced reduction of trichloroethene in clay. J Hazard Mater 173:200–204

    Article  CAS  Google Scholar 

  • Kalburtji KL, Mamolos AP, Kostopoulou S (1997) Nutrient release from decomposing Lotus corniculatus residues in relation to soil pH and nitrogen levels. Agr Ecosyst Environ 65:107–112

    Article  Google Scholar 

  • Khodadoust AP, Reddy KR, Narla O (2006) Cyclodextrin-enhanced electrokinetic remediation of soils contaminated with 2, 4-dinitrotoluene. J Environ Eng 132:1043–1050

    Article  CAS  Google Scholar 

  • Kim JH, Kim JY, Kim SS (2008) Effect of H2SO4 and HCl in the anode purging solution for the electrokinetic-Fenton fremediatoin of soil contaminated with phenanthrene. In: Proceedings of 7th Symposium Electrokinetic Remediation, Seoul, Korea, 2008

  • Ko SO, Schlautman MA, Carraway ER (1999) Partitioning of hydrophobic organic compounds to hydroxypropyl-β-cyclodextrin: Experimental studies and model predictions for surfactant-enhanced remediation applications. Environ Sci Technol 33:2765–2770

    Article  CAS  Google Scholar 

  • Ko SO, Schlautman MA, Carraway ER (2000) Cyclodextrin-enhanced electrokinetic removal of phenanthrene from a model clay soil. Environ Sci Technol 34:1535–1541

    Article  CAS  Google Scholar 

  • Laura L, Katalin G, Éva F (2008) Development of an innovative soil remediation: cyclodextrin-enhanced combined technology. Sci Total Environ 392:12–21

    Article  Google Scholar 

  • Lear G, Harbottle MJ, van der Gast CJ (2004) The effect of electrokinetics on soil microbial communities. Soil Biol Biochem 36:1751–1760

    Article  CAS  Google Scholar 

  • Liang Y, Zhang X, Dai D, Li GH (2009) Porous biocarrier-enhanced biodegradation of crude oil contaminated soil. Int Biodeterior Biodegrad 63:80–87

    Article  CAS  Google Scholar 

  • Luo Q, Zhang X, Wang H (2005) The use of non-uniform electrokinetics to enhance in situ bioremediation of phenol-contaminated soil. J Hazard Mater 121:187–194

    Article  CAS  Google Scholar 

  • Ma JW, Wang FY, Huang ZH (2010) Simultaneous removal of 2, 4-dichlorophenol and Cd from soils by electrokinetic remediation combined with activated bamboo charcoal. J Hazard Mater 176:715–702

    Article  CAS  Google Scholar 

  • Miller MM, Wasik SP, Huang GL (1985) Relationships between octanol-water partition coefficient and aqueous solubility. Environ Sci Technol 19:522–529

    Article  CAS  Google Scholar 

  • Niqui-Arroyo JL, Ortega-Calvo JJ (2007) Integrating biodegradation and electroosmosis for the enhanced removal of polycyclic aromatic hydrocarbons from creosote-polluted soils. J Environ Qual 36:1444–1451

    Article  CAS  Google Scholar 

  • Niqui-Arroyo JL, Bueno-Montes M, Posada-Baquero R (2006) Elecrokinetic enhancement of phenanthrene biodegradation in creosote-polluted clay soil. Environ Pollut 142:326–332

    Article  CAS  Google Scholar 

  • Ouhadi VR, Yong RN, Shariatmadari N (2010) Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method. J Hazard Mater 173:87–94

    Article  CAS  Google Scholar 

  • Park JW, Song HJ (1989) Association of anionic surfactants with beta-cyclodextrin: fluorescence-probed studies on the 1: 1 and 1: 2 complexation. J Phys Chem 93:6454–6458

    Article  CAS  Google Scholar 

  • Pazos M, Rosales E, Alcantara T (2010) Decontamination of soils containing PAHs by electroremediation: a review. J Hazard Mater 177:1–11

    Article  CAS  Google Scholar 

  • Persson T, Lundkvist H, Wirén A (1989) Effects of acidification and liming on carbon and nitrogen mineralization and soil organisms in mor humus. Water Air Soil Poll 45:77–96

    CAS  Google Scholar 

  • Pomes V, Fernandez A, Houi D (2002) Effect of applied electrical field and the initial soil concentration on species recovery during application of the electroremediation process. Process Saf Environ 80:256–264

    Article  CAS  Google Scholar 

  • Reddy KR, Cameselle C, Ala P (2010) Integrated electrokinetic-soil flushing to remove mixed organic and metal contaminants. J Appl Electrochem 40:1269–1279

    Article  CAS  Google Scholar 

  • Schinner F, Ohlinger R, Kandeler E, Margesin R (1996) Methods in soil biology. Bull I’Institut Pasteur 94:311–312

    Google Scholar 

  • Shao DD, Sheng GD, Chen CL (2010) Removal of polychlorinated biphenyls from aqueous solutions using beta-cyclodextrin grafted multiwalled carbon nanotubes. Chemosphere 79:679–685

    Article  CAS  Google Scholar 

  • Shapiro AP, Probstein RF (1993) Removal of contaminants from saturated clay by electroosmosis. Environ Sci Technol 27:283–291

    Article  CAS  Google Scholar 

  • Shi W, Stocker BA, Adler J (1996) Effect of the surface composition of motile Escherichia coli and motile Salmonella species on the direction of galvanotaxis. J Bacteriol 178:1113–1119

    CAS  Google Scholar 

  • Stepniewska Z, Wolińska A, Ziomek J (2009) Response of soil catalase activity to chromium contamination. J Environ Sci 21:1142–1147

    Article  CAS  Google Scholar 

  • Verstraete W, Voets JP (1997) Soil microbial and biochemical characteristics in relation to soil management and fertility. Soil Biology Biochem 9:253–258

    Article  Google Scholar 

  • Virkutyte J, Sillanp M, Latostenmaa P (2002) Electrokinetic soil remediation—critical overview. Sci Total Environ 289:97–121

    Article  CAS  Google Scholar 

  • Wang JM, Marlowe EM, Miller-Maier RM (1998) Cyclodextrin-enhanced biodegradation of phenanthrene. Environ Sci Technol 32:1907–1912

    Article  CAS  Google Scholar 

  • Wick LY, de Munain AR, Springael D (2002) Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl Microbial Biotechnol 58:378–385

    Article  CAS  Google Scholar 

  • Wick LY, Mattle PA, Wattiau P (2004) Electrokinetic transport of PAH-degrading bacteria in model aquifers and soil. Environ Sci Technol 38:4596–4602

    Article  CAS  Google Scholar 

  • Xie QJ, He J, Huang WH, Lu XH (2006) Study of electro-kinetic remediation for HCB containing sediment. J Huazhong Univ Sci Tech (Nature Science Edition) 34:111–114 (in Chinese)

    CAS  Google Scholar 

  • Yeung AT, Hsu C (2005) Electrokinetic remediation of cadmium-contaminated clay. J Environ Eng 131:298–304

    Article  CAS  Google Scholar 

  • Yu GH, He PJ, Shao LM (2010) Reconsideration of anaerobic fermentation from excess sludge at pH 10.0 as an eco-friendly process. J Hazard Mater 175:510–517

    Article  CAS  Google Scholar 

  • Yuan S, Tian M, Lu X (2006) Electrokinetic movement of hexachlorobenzene in clayed soils enhanced by Tween 80 and [beta]-cyclodextrin. J Hazard Mater 137:1218–1225

    Article  CAS  Google Scholar 

  • Yuan SH, Wan JZ, Lu XH (2007) Electrokinetic movement of multiple chlorobenzenes in contaminated soils in the presence of β-cyclodextrin. J Environ Sci 19:968–976

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was partly supported by the National High Technology Research and Development Program (863 Program) of China (2007AA061200), Educational Commission of Heilongjiang province of China (11544038) and National Important Science and Technology Water Projects of China (2008ZX07211-007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duu-Jong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, C., Du, M., Lee, DJ. et al. Electrokinetic remediation and microbial community shift of β-cyclodextrin-dissolved petroleum hydrocarbon-contaminated soil. Appl Microbiol Biotechnol 89, 2019–2025 (2011). https://doi.org/10.1007/s00253-010-2952-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2952-1

Keywords

Navigation