Skip to main content

Advertisement

Log in

Impact of land cover types on soil aggregate stability and erodibility

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Gökçeada is the biggest island, and it is also known as the organic island of Turkey. Approximately 65% of the Gökçeada lands have slope > 12%. Climate, topography, land cover, and soil characteristics are considered to be the main natural factors affecting soil erosion severity in the Gökçeada. Prevention of soil degradation, hence the preservation or improvement of the overall quality of the soil, is directly related to the presence of stable soil aggregates. In addition, the resistance to weathering and replacement of soil particles are also relevant aspects in terms of sustainability. Aggregate stability (AS) and erodibility of land (Kfac) are related to soil properties. However, this relationship can vary under different circumstances. In this study, 248 surface soil samples have been taken from forest and semi-natural areas (FSNA) and agricultural areas (AGRA) according to CORINE 2006. Eleven selected soil properties were measured, and their impacts on AS and Kfac (RUSLE-K) were determined by using the CRT (classification and regression tree) in Gökçeada. Results showed that the relations among soil characteristics changed according to the land cover classes. Total organic carbon is much more associated with AS in AGRA, while total carbon is associated with AS in FSNA. The effect of calcium carbonate on Kfac was higher than other soil properties when the land cover type was ignored. On the other hand, in AGRA, the effect of between clay content on Kfac was greater than those of FSNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acosta-Martinez, V., Zobeck, T. M., Gill, T. E., & Kennedy, A. C. (2003). Enzyme activities and microbial community structure in semiarid agricultural soils. Biology and Fertility of Soils, 38, 216–227.

    Article  CAS  Google Scholar 

  • Alexander, E. B. (1989). Bulk density equations for southern Alaska soils. Canadian Journal of Soil Science, 69(1), 177–180.

    Article  Google Scholar 

  • Anonymous. (1993). Gökçeada and Bozcaada agricultural devolopment and settlement project (Project Number: 1993A020020).

  • Arshad, M. A., & Martin, S. (2002). Identifying critical limits for soil quality indicators in agro-ecosystems. Agriculture, Ecosystems and Environment, 88, 153–160.

    Article  Google Scholar 

  • Auerswald, K., Kainz, M., Angermüller, S., & Steindl, H. (1996). Influence of exchangeable potassium on soil erodibility. Soil Use and Management, 12(3), 117–121.

    Article  Google Scholar 

  • Başaran, M., Erpul, G., Tercan, A. E., & Çanga, M. R. (2008). The effects of land use changes on some soil properties in İndağı Mountain Pass–Çankırı, Turkey. Environmental Monitoring and Assessment, 136(1–3), 101–119.

    Google Scholar 

  • Bayramin, İ., Basaran, M., Erpul, G., & Canga, M. R. (2008). Assessing the effects of land use changes on soil sensitivity to erosion in a highland ecosystem of semi-arid Turkey. Environmental Monitoring and Assessment, 140(1–3), 249–265.

    Article  Google Scholar 

  • Beare, M. H., & Bruce, R. R. (1993). A comparison of methods for measuring water-stable aggregates: implications for determining environmental effects on soil structure. Geoderma, 56(1), 87–104.

    Article  Google Scholar 

  • Blair, N., Faulkner, R. D., Till, A. R., & Poulton, P. R. (2006a). Long-term management impacts on soil C, N and physical fertility—part 1: broadbalk experiment. Soil & Tillage Research, 91, 30–38.

    Article  Google Scholar 

  • Blair, N., Faulkner, R. D., Till, A. R., Korschens, M., & Schulz, E. (2006b). Long-term management impacts on soil C, N and physical fertility—part II: Bad Lauchstadt Static and Extreme Fym Experiments. Soil & Tillage Research, 91, 39–47.

    Article  Google Scholar 

  • Blake, G. R. (1965). Bulk density. In: Black CA (ed) Methods of soil analysis, Part 1. American Society of Agronomy,  374–390.

  • Borůvka, L., Mládková, L., Penížek, V., Drábek, O., & Vašát, R. (2007). Forest soil acidification assessment using principal component analysis and geostatistics. Geoderma, 140(4), 374–382.

    Article  CAS  Google Scholar 

  • Bouyoucos, G. J. (1951). A recalibration of the hydrometer method for making mechanical analysis of soils. Agronomy Journal, 43, 434–438.

    Article  CAS  Google Scholar 

  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. New York: Chapman Hall/CRC.

    Google Scholar 

  • Bronick, C. J., & Lal, R. (2005). Soil structure and management: A review. Geoderma, 124, 3–22.

    Article  CAS  Google Scholar 

  • Chang, L. Y., & Wang, H. W. (2006). Analysis of traffic injury: An application of non-parametric classification tree techniques. Accident; Analysis and Prevention, 38, 1019–1027.

    Article  Google Scholar 

  • Christensen, B. T. (2001). Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science, 52(3), 345–353.

    Article  CAS  Google Scholar 

  • CORINE. (2006). Coordination of information on the environment. Corine Land Cover,  2006 Raster Data 100 x 100 m - Version 13 (02/2010).

  • Curtis, R. O., & Post, B. W. (1964). Estimating Bulk Density from Organic-Matter Content in Some Vermont Forest Soils 1. Soil Science Society of America Journal, 28(2), 285–286.

    Article  Google Scholar 

  • Cusack Daniela, F., Chadwick Oliver, A., & Ladefoged Thegn, V. P. M. (2013). Long-term effects of agriculture on soil carbon pools and carbon chemistry along a Hawaiian environmental gradient. Biogeochemistry, 112(1–3), 229–243.

    Article  CAS  Google Scholar 

  • Da Silva, A. P., Kay, B. D., & Perfect, E. (1997). Management versus inherent soil properties effects on bulk density and relative compaction. Soil and Tillage Research, 44(1), 81–93.

    Article  Google Scholar 

  • De la Rosa, D., & Sobral, R. (2008). Soil quality and methods for its assessment. In A. K. Braimoh & P. L. G. Vlek (Eds.), Land use and soil resources (pp. 167–200). Dordrecht: Springer Science + Business Media B.V.

    Chapter  Google Scholar 

  • Evrendilek, F., Celik, I., & Kilic, S. (2004). Changes in soil organic carbon and other physical soil properties along adjacent Mediterranean forests, grassland and cropland ecosystems. Journal of Arid Environments, 59, 743–752.

    Article  Google Scholar 

  • Falkengren-Grerup, U., ten Brink, D. J., & Brunet, J. (2006). Land use effects on soil N, P, C and pH persist over 40–80 years of forest growth on agricultural soils. Forest Ecology and Management, 225(1), 74–81.

    Article  Google Scholar 

  • Girma, T. (1998). Effect of cultivation on physical and chemical properties of a Vertisol in Middle Awash Valley, Ethiopia. Communications in Soil Science and Plant Analysis, 29(5–6), 587–598.

    Article  CAS  Google Scholar 

  • Grewelling, T., & Peech, M. (1960). Chemical soil test. Cornell University Agr. Expt. Sta. Bull. 960 p.

  • Guo, L. B., & Gifford, R. M. (2002). Soil carbon stocks and land use change: a meta-analysis. Global Change Biology, 8, 345–360.

    Article  Google Scholar 

  • Gupta, O. P. (2002). Water in relation to soils and plants (pp. 31–34). India: Agrobios.

    Google Scholar 

  • Hill, T., & Lewicki, P. (2006). Statistics: methods and applications: a comprehensive reference for science, industry, and data mining. Classification trees, Chapter 9, pp 97-114. Tulsa: StatSoft, Inc.

  • Hoyos, N. (2005). Spatial modeling of soil Erosion potential in a tropical watershed of the Colombian Andes. Catena, 63, 85–108.

    Article  Google Scholar 

  • İlay, R. (2016). Gökçeada Topraklarının Bazı Kalite Parametreleri ve Erozyon Riskinin Belirlenmesi. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, Çanakkale.

  • İlay, R., & Kavdır, Y. (2017). Farklı Arazi Kullanım Türlerinin Topraktaki Suda Çözünebilir İyon Kapsamına Etkileri. Ege Üniversitesi Ziraat Fakültesi Dergisi., 54(3), 367–375.

    Article  Google Scholar 

  • Islam, K. R., & Weil, R. R. (2000). Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agriculture, Ecosystems & Environment, 79(1), 9–16.

    Article  Google Scholar 

  • Kavdir, Y., Özcan, H., Ekinci, H., Yüksel, O., & Yiğini, Y. (2004). The influence of clay content, organic carbon and land use types on soil aggregate stability and tensile strength. Turkish Journal of Agriculture and Forestry, 28(3), 155–162.

    CAS  Google Scholar 

  • Kavdır, Y., Camcı Çetin, S., Öztürkmen, A. R., & Öztürk, H. S. (2006). Organik Tarımda Toprak Kalitesinin Önemi. In I. H. Eraslan & F. Selli (Eds.), Sürdürülebilir Rekabet Avantaji Elde Etmede Organik Tarim Sektörü Sektörel Stratejiler Ve Uygulamalar. Uluslararası Rekabet Arastirmalari Kurumu Dernegi (Urak) Yayınlari No: 2006/1, İstanbul, Bölüm 9.

  • Kemper, W. D., & Rosenau, R. C. (1986). Aggregate stability and size distribution. In A. Klute (Ed.), Methods of soil analysis. Part 1: physical and mineralogical methods. (Monograph no.9, 2nd edn). Madison: ASA.

  • Kesgin, Y., & Varol, B. (2003). Gökçeada ve Bozcaada’nın tersiyer jeolojisi. MTA Dergisi, 126, 49–67.

  • Khresat, S. E., Al-Bakri, J., & Al-Tahhan, R. (2008). Impacts of land use/cover change on soil properties in the Mediterranean region of northwestern Jordan. Land Degradation & Development, 19(4), 397–407.

    Article  Google Scholar 

  • Lim, T. S., Loh, L. Y., & Shih, Y. S. (2000). A comparison of prediction accuracy, complexity and training time of thirty-three old and new classification algorithms. Machine Learning, 40, 203–229.

    Article  Google Scholar 

  • Morgan, R. P. C. (2005). Soil Erosion and conservation. The United Kingdom: Blackwell.

    Google Scholar 

  • Öner, E. (2001). Gökçeada kıyılarında Holosen deniz seviyesi ve kıyı çizgisi değişmeleri. Türkiye’nin Kıyı ve Deniz Alanları. III. Ulusal Konferansı Bildiriler Kitabı, Ankara, 779-789 (In Turkish).

  • Perie, C., & Ouimet, R. (2008). Organic carbon, organic matter and bulk density relationships in boreal forest soils. Canadian Journal of Soil Science, 88(3), 315–325.

    Article  Google Scholar 

  • Poeplau, C., & Don, A. (2015). Carbon sequestration in agricultural soils via cultivation of cover crops—a meta-analysis. Agriculture, Ecosystems & Environment, 200, 33–41.

    Article  CAS  Google Scholar 

  • Pribyl, D. W. (2010). A critical review of the conventional SOC to SOM conversion factor. Geoderma, 156(3-4), 75–83.

    Article  CAS  Google Scholar 

  • Pritchett, K., Kennedy, A. C., & Cogger, C. G. (2011). Management effects on soil quality in organic vegetable systems in western Washington. Soil Science Society of America Journal, 75, 605–615.

    Article  CAS  Google Scholar 

  • Rhoades, J. D., Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., et al. (1996). Salinity: electrical conductivity and total dissolved solids. In Methods of soil analysis. Part 3. Chemical methods (pp. 417–435).

  • Rhoton, F. E., Lindbo, D. L., & Romkens, M. J. M. (1998). Iron oxides erodibility interactions for soils of the Memphis catena. Soil Science Society of America Journal, 62(3), 1693–1703.

    Article  CAS  Google Scholar 

  • Richards L. A. (1954). Diagnosis and Improvement of Saline and Alkali Soils. Agriculture Handbook No: 60 (pp. 94). Washington D.C: U.S. Department of Agriculture.

  • Rodriguez, R. R., Arbelo, C. D., Guerra, J. A., Natario, M. J. S., & Armas, C. M. (2006). Organic carbon stocks and soil erodibility in Canary Islands Andosols. Catena, 66, 228–235.

    Article  Google Scholar 

  • Santos, F. L., Reis, J. L., Martins, O. C., Castanheira, N. L., & Serralheiro, R. P. (2003). Comparative assessment of infiltration, runoff and erosion of sprinkler irrigated soils. Biosystems Engineering, 86(3), 355–364.

    Article  Google Scholar 

  • Sarı R., Türkecan, A., Dönmez, M., Küçükefe, Ş., Aydın, Ü., & Özmen, Ö. (2015). The Geology of Gökçeada (Çanakkale). Bulletin Of The Mineral Research and Exploration, (150). https://doi.org/10.19111/bmre.42119.

  • Saygın, S. D., Basaran, M., Ozcan, A. U., Dolarslan, M., Timur, O. B., Yilman, F. E., & Erpul, G. (2011). Land degradation assessment by geo-spatially modeling different soil erodibility equations in a semi-arid catchment. Environmental Monitoring and Assessment, 180(1–4), 201–215.

    Article  Google Scholar 

  • Scanlon, B. R., Stonestrom, D. A., Reedy, R. C., Leaney, F. W., Gates, J., & Cresswell, R. G. (2009). Inventories and mobilization of unsaturated zone sulfate, fluoride, and chloride related to land use change in semiarid regions, southwestern United States and Australia. Water Resources Research, 45(7). W00A18. https://doi.org/10.1029/2008WR006963.

  • Schlichting, E., & Blume, E. (1966). Bodenkundliches Practikum. Hamburg Und Berlin: Verlag Paul Parey.

    Google Scholar 

  • Schoeneberger, P. J. (2002). Field book for describing and sampling soils, version 3.0. Government Printing Office.

  • Six, J., Elliott, E. T., & Paustian, K. (2000). Soil structure and soil organic matter II. A normalized stability index and the effect of mineralogy. Soil Science Society of America Journal, 64(3), 1042–1049.

    Article  CAS  Google Scholar 

  • Summer, R. M. (1982). Field and laboratory studies on alpine soil erodibility, southern Rocky Mountains, Colorado. Soil Use and Management, 7(3), 253–266.

    Google Scholar 

  • VanRemortel, R. D., & Shields, D. A. (1993). Comparison of clod and core methods for determination of soil bulk density. Communications in Soil Science and Plant Analysis, 24(17–18), 2517–2528.

    Article  Google Scholar 

  • Veihe, A. (2002). The spatial variability of erodibility and its relation to soil types: a study from northern Ghana. Geoderma, 106, 101–120.

    Article  Google Scholar 

  • Whitbread, A. M., Blair, G. J., & Lefroy, R. D. B. (2000). Managing legume leys, residues and fertilisers to enhance the sustainability of wheat cropping systems in Australia. 2. Soil physical fertility and carbon. Soil & Tillage Research, 54, 77–89.

    Article  Google Scholar 

  • Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses—a guide to conservation planning. Agricultural Handbook, No. 537. USDA.

  • Zhang, K., Li, S., Peng, W., & Yu, B. (2004). Erodibility of agricultural soils and loess plateau of China. Soil and Tillage Research, 76, 157–165.

    Article  Google Scholar 

  • Zhao, W. Z., Xiao, H. L., Liu, Z. M., & Li, J. (2005). Soil degradation and restoration as affected by land use change in the semiarid Bashang area, northern China. Catena, 59, 173–186.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the COMU-BAP Project 2012/17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remzi İlay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İlay, R., Kavdir, Y. Impact of land cover types on soil aggregate stability and erodibility. Environ Monit Assess 190, 525 (2018). https://doi.org/10.1007/s10661-018-6847-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6847-4

Keywords

Navigation