Skip to main content

Soil Quality and Methods for its Assessment

  • Chapter
Land Use and Soil Resources

Environmental sustainability will only be achieved by maintenance and improvement of soil quality. Soil quality is considered as the capacity of a soil to function. Its assessment focuses on dynamic aspects to evaluate the sustainability of soil management practices. In this chapter, a wide perspective of soil quality and the complex task of its assessment, considering the inherent and dynamic factors, are introduced. It focuses on the possibilities of applying and integrating the accumulated knowledge in agroecological land evaluation in order to predict soil quality. Advanced information technologies in modern decision support tools enable the integration of large and complex databases, models, tools, and techniques, and are proposed to improve the decision-making process in soil quality management. Although universal recommendations on soil quality and sustainability of soil management must not be done, this chapter presents general trends in soil quality management strategies. This includes arable land identification, crop diversification, organic matter restoration, tillage intensity, and soil input rationalization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antoine, J. (1994). Linking geographical information systems (GIS) and FAO’s agro-ecological zone (AEZ) models for land resource appraisal. FAO World Soil Resources, Report 75. Rome, FAO.

    Google Scholar 

  • Arias, M. E., Gonzalez-Perez, J. A., Gonzalez-Vila, F. J., & Ball A. (2005). Soil health-a new challenge for microbiologists and chemists. International Microbiology, 8, 13–21.

    CAS  Google Scholar 

  • Arshad, M. A. (1999). Tillage and soil quality: Tillage practices for sustainable agriculture and environmental quality in different agro-ecosystems. Soil & Tillage Research, 53, 1–2.

    Article  Google Scholar 

  • Arshad, M. A., & Martin, S. (2002). Identifying critical limits for soil quality indicators in agro-ecosystems. Agriculture, Ecosystems & Environment, 88, 153–160.

    Article  Google Scholar 

  • Ball, A., & De la Rosa, D. (2006). Modeling possibilities for the assessment of soil systems. In: N. Uphoff, A. Ball, E. Fernandes, H. Herren, O. Husson, M. Laing, Ch. Palm, J. Pretty, P. Sanchez, N. Sanginga, & J. Thies (Eds.), Biological approaches to sustainable soil systems (pp.683–692). Boca Raton, FL: Taylor & Francis/CRC Press.

    Google Scholar 

  • Bergstrom, D. W., Monreal, C. M., & King, D. J. (1998). Sensitivity of soil enzyme activity to conservation practices. Soil Science Society of America Journal, 62, 1286–1295.

    CAS  Google Scholar 

  • CGIAR. (2006). Consultative Group on International Agricultural Research. Available at http://www.cgiar.org. (Retrieved on 24 February 2006.)

  • Davidson, D. (1992). The evaluation of land resources. Harlow, Essex, UK: Longman.

    Google Scholar 

  • Davidson, D. (2000). Soil quality assessment: Recent advances and controversies. Progress in Environmental Science, 2, 342–350.

    Google Scholar 

  • De la Rosa, D. (Ed.) (1984). Catalogo de suelos de Andalucia. Sevilla, Spain: Agencia de Medio Ambiente, Junta de Andalucia.

    Google Scholar 

  • De la Rosa, D. (2005). Soil quality evaluation and monitoring based on land evaluation. Land Degradation & Development, 16, 551–559.

    Article  Google Scholar 

  • De la Rosa, D., & Moreira, J. M. (Eds.) (1987). Evaluacion agro-ecologica de recursos naturales de Andalucia. Sevilla, Spain: Agencia de Medio Ambiente, Junta de Andalucia.

    Google Scholar 

  • De la Rosa, D., Moreno, J. A., Garcia, L. V., & Almorza, J. (1992). MicroLEIS: A microcomputer-based Mediterranean land evaluation information system. Soil Use & Management, 8, 89–96.

    Article  Google Scholar 

  • De la Rosa, D., Mayol, F., Moreno, J. A., Bonson, T., & Lozano, S. (1999). An expert system/neural network model (ImpelERO) for evaluating agricultural soil erosion in Andalucia region. Agriculture, Ecosystems & Environment, 73, 211–226.

    Article  Google Scholar 

  • De la Rosa, D., Moreno, J. A., Mayol, F., & Bonson, T. (2000). Assessment of soil erosion vulnerability in western Europe and potential impact on crop productivity due to loss of soil depth using the ImpelERO model. Agriculture, Ecosystems & Environment, 81, 179–190.

    Article  Google Scholar 

  • De la Rosa, D., Mayol, F., Moreno, F., Cabrera, F., Diaz-Pereira, E., & Antoine, J. (2002). A multilingual soil profile database (SDBm Plus) as an essential part of land resources information systems. Environmental Modeling & Software, 17, 721–730.

    Article  Google Scholar 

  • De la Rosa, D., & Van Diepen, C. (2003). Qualitative and quantitative land evaluation. In W. Verheye (Ed.), 1.5 Land Use and Land Cover, Encyclopedia of Life Support System (EOLSS-UNESCO). Oxford: Eolss. Available at http://www.eolss.net.

  • De la Rosa, D., Mayol, F., Diaz-Pereira, E., Fernandez, M., & De la Rosa, D., Jr. (2004). A land evaluation decision support system (MicroLEIS DSS) for agricultural soil protection. Environmental Modeling & Software, 19, 929–942. Available at http://www.microleis.com.

  • Derpsch, R., & Benites, J. (2003). Situation of conservation agriculture in the world. In: Proceedings of the Second World Congress on Conservation Agriculture: Producing in harmony with nature. Iguasu, Brasil/Rome: FAO.

    Google Scholar 

  • Dexter, A. R., & Bird, N. R. A. (2001). Methods for predicting the optimum and the range of soil water contents for tillage based on the water retention curve. Soil & Tillage Research, 57, 203–212.

    Article  Google Scholar 

  • Dexter, A. R. (2004). Soil physical quality. Part I. Theory, effects of soil texture, density and organic matter, and effects on root growth. Geoderma, 120, 201–214.

    Article  Google Scholar 

  • Doran, J. W., & Jones, A. J. (1996). Methods for assessing soil quality. SSSA Special Publication 49. Madison, WI: Soil Science Society of America.

    Google Scholar 

  • Doran, J. W., Sarrantonio, M., & Liebig, M. A. (1997). Soil health and sustainability. Advances in Agronomy, 56, 1–54.

    Article  Google Scholar 

  • EC. (2002). Towards a thematic strategy for soil protection. Communication from the EC to the European Parliament. COM 2002, 179 final. Available at http://europa.eu.int/scadplus/printversion/en/lvb/128122.htm.

  • FAO. (1976). A framework for land evaluation. Soils Bulletin, 32. Rome: FAO.

    Google Scholar 

  • FAO. (1978). Report on the Agro-ecological Zones Project. World Soil Resources Report, 48. Rome: FAO.

    Google Scholar 

  • FAO-CSIC, (2003). The multilingual soil profile database SDBm Plus. Land and Water Digital Media Series, 23. Rome: FAO.

    Google Scholar 

  • Gomez, J. A., Giraldez, J. V., Pastor, M., & Fereres, E. (1999). Effects of tillage methods on soil physical properties, infiltration and yield in an olive orchard. Soil & Tillage Research, 52, 167–175.

    Article  Google Scholar 

  • ICASA. (2006). International Consortium for Agricultural Systems Application. Available at http://www.icasa.net. (Retrieved on 20 February 2006)

  • Imeson, A., Arnoldussen, A., De la Rosa, D., Montanarella, L., Dorren, L., Curfs, M., Arnalds, O., & Van Asselen, S. (2006). SCAPE: Soil conservation and protection in Europe. The way ahead. Luxembourg: CEE-JRC.

    Google Scholar 

  • Karlen, D. L., Mausbach, M. J., Doran, J. W., Cline, R. G., Harris, R. F., & Schuman, G. E. (1997). Soil quality: A concept, definition and framework for evaluation. Soil Science Society of America Journal, 61, 4–10.

    CAS  Google Scholar 

  • Martinez-Raya, A. (2003). Evaluacion y control de la erosion hidrica en suelos agricolas en pendiente, en clima mediterraneao. In: R. Bienes & M. J. Marques (Eds.), Perspectivas de la degradacion del suelo (pp.109–122). I Simposio Nacional de Erosion de Suelos.

    Google Scholar 

  • Moreno, F., Murillo, J. M., Pelegrin, F., & Giron, I. F. (2006). Long-term impact of conservation tillage on stratification ratio of soil organic carbon and loss of total and active CaCO3. Soil & Tillage Research, 85, 86–93.

    Article  Google Scholar 

  • Moscatelli, G.; Sobral, R. (2005). Avances en la selección de indicadores de calidad para las series de suelos representativas de la region Pampeana, Argentina. Buenos Aires: INTA. Available at http://www.inta.gov.ar/mjuarez.

  • Nortcliff, S., (2002). Standardization of soil quality attributes. Agriculture, Ecosystems & Environment, 88, 161–168.

    Article  Google Scholar 

  • Oxley, T., McIntosh, B. S., Winder, N., Mulligan, M., & Engelen, G. (2004). Integrated modelling and decision support tools: A Mediterranean example. Environmental Modeling & Software, 19, 999–1010.

    Article  Google Scholar 

  • Pachepsky, Y., & Rawls, W. J. (2004). Development of pedotransfer functions in soil hydrology. Development in Soil Science, Vol. 30. Amsterdam: Elsevier.

    Book  Google Scholar 

  • Quilchano, C., & Marañon, T., (2002). Dehydrogenase activity in Mediterranean forest soils. Biological Fertility Soils, 35, 102–107.

    Article  CAS  Google Scholar 

  • Rossiter, D. (2003). Biophysical models in land evaluation. In W. Verheye (Ed.), 1.5 Land Use and Land Cover, Encyclopedia of Life Support System (EOLSS-UNESCO). Oxford: Eolss. Available at http://www.eolss.net.

  • Sojka, R. E., & Upchurch, D: R. (1999). Reservations regarding the soil quality concept. Soil Science Society of America Journal, 63, 1039–1054.

    Article  CAS  Google Scholar 

  • Storie, R. E. (1933). An index for rating the agricultural value of soils. California Agricultural Experimental Station Bulletin, 556.

    Google Scholar 

  • Thies, J. E. (2006). Measuring and assessing soil biological properties. In: N. Uphoff, A. Ball, E. Fernandes, H. Herren, O. Husson, M. Laing, Ch. Palm, J. Pretty, P. Sanchez, N. Sanginga & J. Thies (Eds.), Biological approaches to sustainable soil systems (pp. 655–670). Boca Raton, FL: Taylor & Francis/CRC Press.

    Google Scholar 

  • Thysen, I. (2000). Agriculture in the information society. Journal of Agricultural Engineering Research, 76, 297–303.

    Article  Google Scholar 

  • Uphoff, N. (Ed.) (2002). Agro-ecological innovations: Increasing food production with participatory development. London: Earthscan.

    Google Scholar 

  • Uphoff, N., Ball, A., Fernandes, E., Herren, H., Husson, O., Laing, M., Palm, Ch., Pretty, J., Sanchez, P., Sanginga, N., & Thies, J. (Eds.) (2006). Biological approaches to sustainable soil systems. Boca Raton, FL: Taylor & Francis/CRC Press.

    Google Scholar 

  • USDA. (1961). Land capability classification. Agriculture handbook 210. Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • USDA. (2006). Soil Quality Institute. Natural resources conservation service. Available at http://soils.usda.gov/sqi/. (Retrieved on 20 February 2006.)

  • Van Lanen, H. A. J. (1991). Qualitative and quantitative physical land evaluation: An operational approach. Ph.D. thesis. Wageningen, The Netherlands: Wageningen Agricultural University.

    Google Scholar 

  • Verheye, W. (1988). The status of soil mapping and land evaluation for land use planning in the European Community. In: J. M. Boussard (Ed.), Agriculture: Socio-economic factors in land evaluation. Luxembourg: Office for Official Publications of the EU.

    Google Scholar 

  • Wallace, A. (1994). Soil organic matter must be restored to near original levels. Communications in Soil Science & Plant Analysis, 25, 29–35.

    Article  Google Scholar 

  • Warkentin, B. P. (1995). The changing concept of soil quality. Journal of Soil & Water Conservation, 50, 226–228.

    Google Scholar 

  • Wischmeier, W. H., & Smith, D. D. (1965). Predicting rainfall erosion based from cropland east of the Rocky Mountains. Agriculture Handbook, 282. Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • Wolfe, D. (2006). Approaches to monitoring soil systems. In N. Uphoff, A. Ball, E. Fernandes, H. Herren, O. Husson, M. Laing, Ch. Palm, J. Pretty, P. Sanchez, N. Sanginga & J. Thies (Eds.), Biological approaches to sustainable soil systems (pp. 671–681). Boca Raton, FL: Taylor & Francis/CRC Press.

    Google Scholar 

  • Zalidis, G., Stamatiadis, S., Takavakoglou, V., Eskridge, K., & Misopolinos, N. (2002). Impacts of agricultural practices on soil and water quality in the Mediterranean region and proposed assessment methodology. Agriculture, Ecosystems & Environment, 88, 137–146.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

de la Rosa, D., Sobral, R. (2008). Soil Quality and Methods for its Assessment. In: Braimoh, A.K., Vlek, P.L.G. (eds) Land Use and Soil Resources. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6778-5_9

Download citation

Publish with us

Policies and ethics