Skip to main content

Advertisement

Log in

Cyto-genotoxic consequences of carbendazim treatment monitored by cytogenetical analysis using Allium root tip bioassay

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Environmental pollution is one of the major problems of these days. One of the reasons of environmental pollution is the indiscriminate use of agrochemicals in agriculture. Fungicides are being extensively used in agriculture for enhancing crop yield and growth by controlling fungal growth. Fungicide carbendazim is widely applied to soil and seeds of vegetable/cereal crops in India and is effective against a very broad spectrum of fungi. The present study was designed to monitor the cyto-genotoxic effects of carbendazim directly in treated soils by cytogenetical analysis using Allium cepa root tip bioassay. In a pot experiment, fungicide carbendazim was added to soil at the rates of 2.5, 5, 7.5, and 10 mg kg−1 soil and uniform size onion bulb was planted in each pot, and three replicates were maintained for each dose at 1, 7, 15, 30, and 45 days after application and roots from onion bulbs were fixed for cytogenetical analysis. Findings indicate that carbendazim treatment leads to a significant dose and duration-dependent decrease in percent mitotic index with related increase in mitotic inhibition. Statistical analysis showed a significant effect of carbendazim doses and duration of treatment on the percentage relative abnormality rate of A. cepa. Phase indices of our study showed high numbers of cells in prophase as compared to other phases at some doses of treatment. The different types of chromosomal abnormalities observed in our study serve as indicators of genotoxicity of carbendazim and we report for the first time the effect of its application directly in soil using a plant test system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akyil, D., Ozkara, A., Erdogmus, S. F., Eren, Y., Konuk, M., & Saglam, E. (2015). Evaluation of cytotoxic and genotoxic effects of Benodanil by using Allium and Micronucleus assays. Drug Chemical Toxicology, 3, 1–6.

    Google Scholar 

  • Antonopoulos, D. F., & Elena, K. (2008). Susceptibility of Greek alfalfa and clover cultivars to Fusarium oxysporum f. sp. medicaginis and potential methods of disease control. Journal of Plant Diseases and Protection, 115, 162–166.

    Article  CAS  Google Scholar 

  • Ateeq, B., Farah, M. A., Niamat, A. M., & Waseem, A. (2002). Clastogenicity of pentachlorophenol, 2,4-D and butachlor evaluated by Allium root tip test. Mutation Research, 514, 105–113.

    Article  CAS  Google Scholar 

  • Aydemir, N., Çelikler, S., Summak, Ş., Yılmaz, D., & Özer, Ö. (2008). Evaluation of clastogenicity of 4, 6-Dinitro-o-cresol (DNOC) in Allium root tip test. Journal of Biological and Environmental Sciences, 2(5), 59–63.

    Google Scholar 

  • Banerjee, A. (1992). A time course study relative cytotoxic effect of extracts of different types of tobacco on Allium cepa mitosis. Cytologia, 57, 315–320.

    Article  Google Scholar 

  • Batista, N. J. C., Cavalcante, A. A. C. M., Oliveira, M. G., Medeiros, E. C. N., Machado, J. L., Evangelista, S. R., Dias, J. F., Santos, C. E. I., Duarte, A., Silva, F. R., & Silva, J. (2016). Genotoxic and mutagenic evaluation of water samples from a river under the influence of different anthropogenic activities. Chemosphere, 164, 134–141.

    Article  CAS  Google Scholar 

  • Bianchi, J., Casimiro Fernandes, T. C., & Marin-Morales, M. A. (2016). Induction of mitotic and chromosomal abnormalities on Allium cepa cells by pesticides imidacloprid and sulfentrazone and the mixture of them. Chemosphere, 144, 475–483.

    Article  CAS  Google Scholar 

  • Bolognesi, C., & Merlo, F. D. (2011). Pesticides: human health effects. Encyclopedia of Environmental Health., 438–453.

  • Botías, C., David, A., Hill, E. M., & Goulson, D. (2016). Contamination of wild plants near neonicotinoid seed-treated crops, and implications for non-target insects. Science of the Total Environment, 566-567, 269–278.

    Article  Google Scholar 

  • Bremner, J. M. (1965). Total nitrogen. In C. A. Black (Ed.), Methods in soil analysis: chemical and microbiological properties part II American Society of Agronomy.

    Google Scholar 

  • Burrows, L. A., & Edwards, C. A. (2004). The use of integrated soil microcosms to assess the impact of carbendazim on soil ecosystems. Ecotoxicology, 13, 143–161.

    Article  CAS  Google Scholar 

  • Davidse, L. C. (1986). Benzimidazole fungicides: mechanisms of action and biological impact. Annual Review of Phytopathology, 24, 43–65.

    Article  CAS  Google Scholar 

  • de la Huebra, M. J. G., Hernandez, P., Nieto, O., Ballesteros, Y., & Hernandez, L. (2000). Determination of carbendazim in soil samples by anodic stripping voltammetry using a carbon fiber ultramicroelectrode. Fresenius Journal of Analytical Chemistry, 367, 474–478.

    Article  Google Scholar 

  • de Souza, R. B., de Souza, C. P., Bueno, O. C., & Fontanetti, C. S. (2017). Genotoxicity evaluation of two metallic-insecticides using Allium cepa and Tradescantia pallida: a new alternative against leaf-cutting ants. Chemosphere, 168, 1093–1099.

    Article  Google Scholar 

  • Delp, C. J. (1987). In H. Lyr (Ed.), Benzimidazole and related fungicides, in modem selective fungicides: properties, applications, mechanisms of action (pp. 233–244). New York: Wiley.

    Google Scholar 

  • Dikic, D., Mojsovic-Cuic, A., Cupor, I., Benkovic, V., Horvat-Knezevic, A., Lisicic, D., & Orsolic, N. (2012). Carbendazim combined with imazalil or cypermethrin potentiate DNA damage in hepatocytes of mice. Human and Experimental Toxicology, 31, 492–505.

    Article  CAS  Google Scholar 

  • Doroftei, E., & Antofie, M. M. (2013). The cyto- and genotoxic effects induced by sulphates in Allium cepa L. Analele Universitatii din Oradea, Fascicula Biologie, 1, 64–70.

    Google Scholar 

  • El-Ghamery, A. A., El-Nahas, A. I., & Mansour, M. M. (2000). The action of atrazine herbicide as an inhibitor of cell division on chromosomes and nucleic acids content in root meristems of Allium cepa and Vicia faba. Cytologia, 65, 277–287.

    Article  CAS  Google Scholar 

  • Fang, H., Wang, Y., Gao, C., Yan, H., Dong, B., & Yu, Y. (2010). Isolation and characterization of Pseudomonas sp. CBW capable of degrading carbendazim. Biodegradation, 21, 939–946.

    Article  CAS  Google Scholar 

  • Fatma, F., Verma, S., Kamal, A., & Srivastava, A. (2018). Monitoring of morphotoxic, cytotoxic and genotoxic potential of mancozeb using Allium assay. Chemosphere, 195, 864–870.

    Article  CAS  Google Scholar 

  • Firbas, P., & Amon, T. (2014). Chromosome damage studies in the onion plant Allium cepa L. Caryologia, 67, 25–35.

    Article  Google Scholar 

  • Haliem, A. S. (1990). Cytological effects of the herbicide sencor on mitosis of Allium cepa. Egyptian Journal of Botany, 33, 93–104.

    CAS  Google Scholar 

  • Harnpicharnchai, K., Chaiear, N., & Charerntanyarak, L. (2013). Residues of organophosphate pesticides used in vegetable cultivation in ambient air, surface water and soil in Bueng Niam Subdistrict, Khon Kaen, Thailand. Southeast Asian Journal of Tropical Medicine and Public Health, 44(6), 1088–1097.

    CAS  Google Scholar 

  • Hicks, B. (1998). Generic pesticides—the products and markets. Agrow reports, PJB publications.

  • Huan, Z., Luo, J., Xu, Z., & Xie, D. (2016). Acute toxicity and genotoxicity of carbendazim, main impurities and metabolite to earthworms (Eisenia foetida). Bulletin of Environmental Contamination and Toxicology, 96, 62–69.

    Article  CAS  Google Scholar 

  • Ishidate Jr., M., Harnois, M. C., & Sofuni, T. (1988). A comparative analysis of data on the clastogenicity of 951 chemical substances tested in mammalian cell cultures. Mutation Research, 195, 151–213.

    Article  CAS  Google Scholar 

  • Jabee, F., Ansari, M. Y. K., & Shahab, D. (2008). Studies on the effect of maleic hydrazide on root tip cells and pollen fertility in Trigonella foenum-graecum L. Turkish Journal of Botany, 32, 337–344.

    Google Scholar 

  • Jackson, M. L. (1967). Soil chemical analysis. New Delhi: Prentice Hall of India Pvt. Ltd..

    Google Scholar 

  • JanakiDevi, V., Nagarani, N., YokeshBabu, M., Kumaraguru, A. K., & Ramakritinan, C. M. (2013). A study of proteotoxicity and genotoxicity induced by the pesticide and fungicide on marine invertebrate (Donax faba). Chemosphere, 90(3), 1158–1166.

    Article  CAS  Google Scholar 

  • Jin, R. Y., Gui, W. J., Shou, L. F., Wu, H. M., & Zhu, G. N. (2005). Residue and degradation dynamics of carbendazim in orange and soil. Jiangsu Journal of Agricultural Sciences, 2, 111–114.

    Google Scholar 

  • Kaymak, F. (2005). Cytogenetic effects of maleic hydrazide on Helianthus annuus L. Pakistan Journal of Biological Science, 8(1), 104–108.

    Article  Google Scholar 

  • Kuchy, A. H., Wani, A. A., & Kamili, A. N. (2016). Cytogenetic effects of three commercially formulated pesticides on somatic and germ cells of Allium cepa. Environmental Science and Pollution Research, 23, 6895–6906.

    Article  CAS  Google Scholar 

  • Leme, D. M., & Marin-Morales, M. A. (2009). Allium cepa test in environmental monitoring: a review on its application. Mutation Research, 682, 71–81.

    Article  CAS  Google Scholar 

  • Li, H. L., & Meng, Z. Q. (2003). Genotoxicity of hydrated sulfur dioxide on root tips of Allium sativum and Vicia faba. Mutation Research, 537, 109–114.

    Article  Google Scholar 

  • Liman, R., Cigerci, I. H., & Öztürk, N. S. (2015). Determination of genotoxic effects of Imazethapyr herbicide in Allium cepa roots cells by mitotic activity, chromosome aberration, and comet assay. Pesticide Biochemistry and Physiology, 118, 38–42.

    Article  CAS  Google Scholar 

  • Liu, D., Jiang, W., & Li, M. (1992). Effects of trivalent and hexavalent chromium on root growth and cell division of Allium cepa. Hereditas, 117, 23–29.

    Article  CAS  Google Scholar 

  • Lutterbeck, C. A., Kern, D. I., Machado, E. L., & Kümmerer, K. (2015). Evaluation of the toxic effects of four anti-cancer drugs in plant bioassays and its potency for screening in the context of waste water reuse for irrigation. Chemosphere, 135, 403–410.

    Article  CAS  Google Scholar 

  • Mahfouz, H. M., Barakat, H. M., Fatah Maher, A. B. D., et al. (2013). Comparison of cytotoxic and genotoxic effects of the synthetic fungicide nimrod and the natural fungicide rhizo–N. African Journal of Pharmacy and Pharmacology, 7(27), 1924–1933.

    Article  Google Scholar 

  • Martins, N. C. M., Souza, V. V., & Souza, T. S. (2016). Cytotoxic, genotoxic and mutagenic effects of sewage sludge on Allium cepa. Chemosphere, 148, 481–486.

    Article  Google Scholar 

  • Morinaga, H., Yanase, T., Nomura, M., Okabe, T., Goto, K., Harada, N., & Nawata, H. (2004). A benzimidazole fungicide, benomyl, and its metabolite, carbendazim, induce aromatase activity in a human ovarian granulose-like tumor cell line (KGN). Endocrinology, 145, 1860–1869.

    Article  CAS  Google Scholar 

  • Mrema, E. J., Rubino, F. M., Brambilla, G., Moretto, A., Tsatsakis, A. M., & Colosio, C. (2013). Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology, 307, 74–88.

    Article  CAS  Google Scholar 

  • Nakamura, S., Oda, Y., Shimade, T., Oki, I., & Sugimoto, K. (1987). SOS-inducing activity of chemical carcinogens and mutagens in Salmonella typhimurium TA1535/pSK1002: examination with 151 chemicals. Mutation Research, 192, 239–246.

    CAS  Google Scholar 

  • Naksen, W., Prapamontol, T., Mangklabruks, A., Chantara, S., Thavornyutikarn, P., Robson, M. G., Ryan, P. B., Barr, D. B., & Panuwet, P. (2016). A single method for detecting 11 organophosphate pesticides in human plasma and breastmilk using GC-FPD. Journal of Chromatography B, 1025, 92–104.

    Article  CAS  Google Scholar 

  • Palanikumar, L., Kumaraguru, A. K., Ramakritinan, C. M., & Anand, M. (2014). Toxicity, biochemical and clastogenic response of chlorpyrifos and carbendazim in milkfish Chanos chanos. International Journal of Environmental Science and Technology, 11, 765–774.

    Article  CAS  Google Scholar 

  • Pandey, R. M., & Santosh, U. (2007). Impact of food additives on mitotic chromosomes of Vicia faba L. Caryologia, 60, 309–314.

    Article  Google Scholar 

  • Paul, A., Nag, S., & Sinha, K. (2013). Cytological effects of blitox on root mitosis of Allium cepa L. International Journal of Scientific and Research Publications, 3(5), 1–7.

    Google Scholar 

  • Peech, M., Alexander, L. T., Dean, L. A., & Reed, J. F. (1947). Methods of soil analysis for soil-fertility investigations. Washington DC: USDA Circ.

    Google Scholar 

  • Quian, Y. (1996). Transformation and expression of the resistance gene to carbendazim into Trichoderma harzianum. Resistant Pest Management, 6, 8–12.

    Google Scholar 

  • Rajeswary, S., Kumaran, B., Ilangovan, R., Yuvaraj, S., Sridhar, M., Venkataraman, P., Srinivasan, N., & Aruldhas, M. M. (2007). Modulation of antioxidant defense system by the environmental fungicide carbendazim in Leydig cells of rats. Reproduction Toxicology, 24, 371–380.

    Article  CAS  Google Scholar 

  • Reisinger, K., Szigeti, J., & Varnagy, L. (2006). Determination of carbendazim residues in the eggs, liver and pectoral muscle of Japanese quail (Coturnix coturnix japonica). Acta Veterinaria Hungarica, 54, 127–133.

    Article  CAS  Google Scholar 

  • Richmond, D. V., & Phillips, A. (1975). The effects of benomyl and carbendazim on mitosis in hyphae of Botrytis cinerea Pers. ex Fr. and roots of Allium cepa L. Pesticide Biochemistry and Physiology, 5, 367–379.

    Article  CAS  Google Scholar 

  • Rodríguez, Y. A., Christofoletti, C. A., Pedro, J., Bueno, O. C., Malaspina, O., Ferreira, R. A. C., & Fontanetti, C. S. (2015). Allium cepa and Tradescantia pallida bioassays to evaluate effects of the insecticide imidacloprid. Chemosphere, 120, 438–442.

    Article  Google Scholar 

  • Sbrana, I., & Loprieno, N. (1985). The cytogenetic effects of o-phenylenediamine in mammalian and in human cells. Mutation Research, 147, 318.

    Article  Google Scholar 

  • Sharma, A. K., & Sharma, A. (1980). Chromosome techniques: theory and practice (third ed.). London: Butterworths and Co. Ltd.

  • Singh, P., Srivastava, A. K., & Singh, A. K. (2008). Cell cycle stage specific application of cypermethrin and carbendazim to assess the genotoxicity in somatic cells of Hordeum vulgare L. Bulletin of Environmental Contamination and Toxicology, 81, 258–261.

    Article  CAS  Google Scholar 

  • Singh, R. J. (2003). Plant cytogenetics. CRC Press, Boca Raton, 463.

  • Singhal, L. K., Bagga, S., Kumar, R., & Chauhan, R. S. (2003). Down regulation of humoral immunity in chickens due to carbendazim. Toxicology In Vitro, 17, 687–692.

    Article  CAS  Google Scholar 

  • Smaka-kincl, V., Stegnar, P., Lovka, M., & Toman, M. J. (1996). The evaluation of waste, surface and ground water quality using the Allium test procedure. Mutation Research, 368, 171–179.

    Article  CAS  Google Scholar 

  • Sofuni, T., Matsuoka, A., Sawada, M., Ishidate Jr., M., Zeiger, E., & Shelby, M. D. (1990). A comparison of chromosome aberration induction by 25 compounds tested by two Chinese hamster cell (CHL and CHO) systems in culture. Mutation Research, 241, 175–213.

    Article  CAS  Google Scholar 

  • Songa, E. A., & Okonkwo, J. O. (2016). Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: a review. Talanta, 155, 289–304.

    Article  CAS  Google Scholar 

  • Şutan, N. A., Popescu, A., Mihaescu, C., Soare, L. C., & Marinescu, M. V. (2014). Evaluation of cytotoxic and genotoxic potential of the fungicide ridomil in Allium cepa L. Analele Ştiinţifice ale Universităţii, Al. I. Cuza Iaşi s. II a. Biologie vegetală. 60(1), 5–12.

  • Tomlin, C. (1994). The pesticide manual: a world compendium, in incorporating the agrochemicals handbook, Royal Society of Chemistry, England.

  • Trivedi, A. K., & Ahmad, I. (2013). Genotoxicity of chrysotile asbestos on Allium cepa L. meristematic root tip cells. Current Science, 105, 781–786.

    CAS  Google Scholar 

  • Truta, E., Capraru, G., Zamfirache, M. M., Asaftei, M., Toma, C., Olteanu, Z., & Ivanescu, L. (2010). Estimation of genotoxic potential of carbendazim in fenugreek. Studia Universitatis “Vasile Goldiş”, Seria Ştiinţele Vieţii, 20(2), 39–44.

    Google Scholar 

  • Tsaboula, A., Papadakis, E. N., Vryzas, Z., Kotopoulou, A., Kintzikoglou, K., & Mourkidou, E. P. (2016). Environmental and human risk hierarchy of pesticides: a prioritization method, based on monitoring, hazard assessment and environmental fate. Environment International, 91, 78–93.

    Article  CAS  Google Scholar 

  • Ventura-Camargo, B. C., Angelis, D. F., & Marin-Morales, M. A. (2016). Assessment of the cytotoxic, genotoxic and mutagenic effects of the commercial black dye in Allium cepa cells before and after bacterial biodegradation treatment. Chemosphere, 161, 325–332.

    Article  CAS  Google Scholar 

  • Vera Lopez, P., Ruiz Rejon, C., Lozano, R., & Ruiz Rejon, M. (1990). Effects of thiram on the mitotic division rhythm in roots of Allium sativum L. Cytobios, 62, 135–139.

    CAS  Google Scholar 

  • Verma, S., & Srivastava, A. (2017). Cytomorphologic parameters in monitoring cytogenotoxic effects of fertilizer in Allium cepa L. Environmental Monitoring and Assessment, 189(4), 159.

    Article  Google Scholar 

  • Verma, S., Arora, K., & Srivastava, A. (2016). Monitoring of genotoxic risks of nitrogen fertilizers by Allium cepa L. mitosis bioassay. Caryologia, 69(4), 343–350.

    Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63, 251–263.

    Article  Google Scholar 

  • Yu, G. C., Liu, Y. Z., Xie, L., & Wang, X. F. (2009). Involvement of Sertoli cells in spermatogenic failure induced by carbendazim. Environmental Toxicology and Pharmacology, 27, 287–292.

    Article  CAS  Google Scholar 

  • Yunlong, Y., Xiaoqiang, C., Guohui, P., Xiang, Y., & Hua, F. (2009). Effects of repeated applications of fungicide carbendazim on its persistence and microbial community in soil. Journal of Environmental Science, 21, 179–185.

    Article  Google Scholar 

  • Zeiger, E., Anderson, B., Haworth, S., Lawlor, T., & Mortelmans, K. (1988). Salmonella mutagenicity tests: IV. Results from the testing of 300 chemicals. Environmental and Molecular Mutagenesis, 12, 1–158.

    Article  Google Scholar 

  • Zhang, L. Z., Qiao, X. W., & Ma, L. P. (2009). Influence of environmental factors on degradation of carbendazim by Bacillus pumilus strain NY97-1. Internation Journal of Environmental Pollution, 38, 309–317.

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the University Grant Commission (UGC), India, for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alka Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Srivastava, A. Cyto-genotoxic consequences of carbendazim treatment monitored by cytogenetical analysis using Allium root tip bioassay. Environ Monit Assess 190, 238 (2018). https://doi.org/10.1007/s10661-018-6616-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6616-4

Keywords

Navigation