Skip to main content
Log in

Preliminary assessment of groundwater hydrogeochemistry within Gilan, a northern province of Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In four basins of Gilan province, groundwater samples were collected from 127 piezometric wells to investigate the hydrogeochemistry of groundwater, and additionally its suitability for drinking and irrigation purposes. The average concentrations of major cations and anions follow the order of Ca2+ > Na+ > Mg2+ > K+ and \( {\mathrm{HCO}}_3^{-}>{\mathrm{Cl}}^{-}>{\mathrm{SO}}_4^{2-}>{\mathrm{CO}}_3^{2-} \), respectively. Using Piper diagram delineation, CaMgHCO3 was determined as the main hydrogeochemical facies of groundwater. According to Piper diagrams, Gibbs plots, and ionic ratios, silicate weathering and ion exchange are the major processes regulating the groundwater hydrochemistry. Furthermore, saturation indices (SIs) revealed that carbonate precipitation also plays an important role in aquifers. Among the processes, weathering of silicate minerals seems to be the dominant process. Comparing the analyzed major ions and physicochemical parameters with the WHO guideline values indicates that the potability of most groundwater samples is generally acceptable. Electrical conductivity (EC) and total dissolved solid (TDS) measurements along with sodium percentage (SP), sodium adsorption ratio (SAR), Kelley’s index (KI), and residual sodium carbonate (RSC) calculations suggest that groundwater in many areas is suitable for irrigation use. Nonetheless, total hardness (TH) values ranging as high as 650.0 mg/l reveal many groundwater samples to be classified as hard and very hard, indicating a requirement for long-term monitoring and further evaluation. The present study shows that the groundwater quality in Lahijan, Astaneh, and to a lesser extent Fouman drainage basins is lower than in Talesh. Therefore, intense monitoring programs towards enhanced water management practices are recommended before poorer quality groundwater is further utilized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aastri, J. C. V. (1994). Groundwater chemical quality in river basins, hydrogeochemical facies and hydrogeochemical modeling. India: Bharathidasan University.

    Google Scholar 

  • Agha Nabati, A. (2004). Iran geology. Tehran: Geological Survey of Iran.

    Google Scholar 

  • Aghazadeh, N., & Mogaddam, A. (2011). Investigation of hydrochemical characteristics of groundwater in the Harzandat aquifer, northwest of Iran. Environmental Monitoring and Assessment, 176(1–4), 183–195.

    Article  CAS  Google Scholar 

  • Agrawal V., & Jagatai M. (1997). Hydro geochemical assessment of groundwater quality in Udaipur city, Rajasthan, India. Proceedings of National Conference on Dimension of Environmental Stress in India. Dept. of Geology, MS University, Baroda. p. 151–154.

  • Alaya, M. B., Saidi, S., Zemni, T., & Zargouni, F. (2014). Suitability assessment of deep groundwater for drinking and irrigation use in the Djeffara aquifers (Northern Gabes, south-eastern Tunisia). Environmental Earth Sciences, 71(8), 3387–3421.

    Article  Google Scholar 

  • Anku, Y. S., Banoeng-Yakubo, B., Asiedu, D. K., & Yidana, S. M. (2009). Water quality analysis of groundwater in crystalline basement rocks, Northern Ghana. Environmental Geology, 58(5), 989–997.

    Article  CAS  Google Scholar 

  • APHA. (1998). Standard methods for the examination of water and wastewater. Washington: American Public Health Association.

    Google Scholar 

  • Appelo, C. A. J., & Willemsen, A. (1987). Geochemical calculations and observations on salt water intrusions, I. A combined geochemical/minxing cell model. Journal of Hydrology, 94(3), 313–330.

    Article  CAS  Google Scholar 

  • Baghvand, A., Nasrabadi, T., Bidhendi, G. N., Vosoogh, A., Karbassi, A., & Mehrdadi, N. (2010). Groundwater quality degradation of an aquifer in Iran central desert. Desalination, 260(1), 264–275.

    Article  CAS  Google Scholar 

  • Berberian, M. (1983). The southern Caspian: a compressional depression floored by a trapped, modified oceanic crust. Canadian Journal of Earth Sciences, 20, 163–183.

    Article  Google Scholar 

  • Brunet, M. F., Korotaev, M. V., Ershov, A. V., & Nikishin, A. M. (2003). The South Caspian Basin: a review of its evolution from subsidence modelling. Sedimentary Geology, 156, 119–148.

    Article  Google Scholar 

  • Clark, G. C., Davies, R. G., Hamzepour, B., & Jones, C. R. (1975). Explanatory text of the Bandar-e-Anzali quadrangle map 1:250000. Tehran: Geological survey of Iran.

    Google Scholar 

  • Coetsiers, M., & Walraevens, K. (2006). Chemical characterization of the neogene aquifer, Belgium. Hydrogeology Journal, 14(8), 1556–1568.

    Article  CAS  Google Scholar 

  • Corniello, A., & Ducci, D. (2014). Hydrogeochemical characterization of the main aquifer of the “Litorale Domizio-Agro Aversano NIPS” (Campania—Southern Italy). Journal of Geochemical Exploration, 137, 1–10.

    Article  CAS  Google Scholar 

  • Department of National Health and Welfare (Canada). (1978). Guidelines for Canadian drinking water quality. Ottawa: Supporting documentation.

    Google Scholar 

  • Deutsch, W. J. (1997). Groundwater geochemistry: fundamentals and applications to contamination. Boca Raton: Florida, CRC press, p. 232.

    Google Scholar 

  • Dudeja, D., Bartarya, S. K., & Biyani, A. (2011). Hydrochemical and water quality assessment of groundwater in Doon Valley of Outer Himalaya, Uttarakhand, India. Environmental Monitoring and Assessment, 181(1–4), 183–204.

    Article  CAS  Google Scholar 

  • Durvey, V. S., Sharma, L. L., Saini, V. P., & Sharma, B. K. (1991). Handbook on the methodology of water quality assessment. India: Rajasthan Agriculture University, Bikaner.

  • Eaton, F. M. (1950). Significance of carbonates in irrigation waters. Soil Science, 69(2), 123–134.

    Article  CAS  Google Scholar 

  • Eby, G. N. (2004). Principles of environmental geochemistry. Victoria: Thomson Brooks/Cole Pub.

    Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs: NJ: Printice-Hall.

    Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170(3962), 1088–1090.

    Article  CAS  Google Scholar 

  • Gnanachandrasamy, G., Ramkumar, T., Venkatramanan, S., Vasudevan, S., Chung, S. Y., & Bagyaraj, M. (2015). Accessing groundwater quality in lower part of Nagapattinam district, Southern India: using hydrogeochemistry and GIS interpolation techniques. Applied Water Science, 5(1), 39–55.

    Article  CAS  Google Scholar 

  • Hounslow, A. (1995). Water quality data: analysis and interpretation. New York: CRC press.

    Google Scholar 

  • Jalali, M. (2011). Nitrate pollution of groundwater in Toyserkan, western Iran. Environmental Earth Sciences, 62(5), 907–913.

    Article  CAS  Google Scholar 

  • Jiang, Y., & Yan, J. (2010). Effects of land use on hydrochemistry and contamination of Karst groundwater from Nandong underground river system, China. Water, Air, & Soil Pollution, 210(1–4), 123–141.

    Article  CAS  Google Scholar 

  • Johnson, R. A., & Wichern, D. W. (1992). Applied multivariate statistical analysis (Vol. 4). Englewood Cliffs: Prentice hall.

    Google Scholar 

  • Katz, B. G., Coplen, T. B., Bullen, T. D., & Davis, J. H. (1997). Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst. Groundwater, 35(6), 1014–1028.

    Article  CAS  Google Scholar 

  • Kazancı, N., Gulbabazadeh, T., Leroyd, S., & Ilerie, O. (2004). Sedimentary and environmental characteristics of the Gilan–Mazenderan plain, northern Iran: influence of long- and short-term Caspian water level fluctuations on geomorphology. Journal of Marine Systems, 46, 145–168.

    Article  Google Scholar 

  • Kazi, T. G., Arain, M. B., Jamali, M. K., Jalbani, N., Afridi, H. I., Sarfraz, R. A., Baig, J. A., & Shah, A. Q. (2009). Assessment of water quality of polluted lake using multivariate statistical techniques: a case study. Ecotoxicology and Environmental Safety, 72(2), 301–309.

    Article  CAS  Google Scholar 

  • Kelley, W. P. (1951). AIkali soils. Their formation, properties and reclamation. New York: Reinhold publishing company.

    Google Scholar 

  • Keshavarzi, B., Abbasi S.H., Moore, F., Delshab, H., & Soltani, N. (2017). Polycyclic aromatic hydrocarbons in street dust of Bushehr City, Iran: Status, Source, and Human Health Risk Assessment. Polycyclic Aromatic Compounds, 1–15. https://doi.org/10.1080/10406638.2017.1354897

  • Langmuir, D. (1997). Aqueous environmental geochemistry. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Langmuir, D., Hall, P., & Drever, J. (1997). Environmental geochemistry. New Jersey: Prentice Hall.

    Google Scholar 

  • Lauchli, A., & Epstein, E. (1990). Plant responses to saline and sodic conditions. Agricultural Salinity Assessment and Management, 71, 113–137.

    Google Scholar 

  • Liu, F., Song, X., Yang, L., Zhang, Y., Han, D., Ma, Y., & Bu, H. (2014). Identifying the origin and geochemical evolution of groundwater using hydrochemistry and stable isotopes in Subei Lake Basin, Ordos energy base, Northwestern China. Hydrology and Earth System Sciences Discussions, 11(5), 5709–5745.

    Article  Google Scholar 

  • Machender, G., Dhakate, R., & Reddy, M. N. (2014). Hydrochemistry of groundwater (GW) and surface water (SW) for assessment of fluoride in Chinnaeru river basin, Nalgonda district, (AP) India. Environmental Earth Sciences, 72(10), 4017–4034.

    Article  CAS  Google Scholar 

  • Marghade, D., Malpe, D., & Zade, A. (2011). Geochemical characterization of groundwater from northeastern part of Nagpur urban, Central India. Environmental Earth Sciences, 62(7), 1419–1430.

    Article  CAS  Google Scholar 

  • Mayo, A. L., & Loucks, M. D. (1995). Solute and isotopic geochemistry and ground water flow in the central Wasatch range, Utah. Journal of Hydrology, 172(1), 31–59.

    Article  CAS  Google Scholar 

  • Merkel, B. J., Planer-Friedrich, B., & Nordstrom, D. (2008). Groundwater geochemistry: a practical guide to modeling of natural and contaminated aquatic systems (2nd ed.). Berlin: Springer-Verlag.

    Google Scholar 

  • Meyback, M. (1987). Global chemical weathering of surficial rocks estimated from river-dissolved loads. American Journal of Science, 287, 401–428.

    Article  Google Scholar 

  • Modaberi, H., & Maskani, H. R. (2016). Investigation of quantitative and qualitative variations of groundwater in Gilan province (the case study of Foument plain). The 4th National Conference on Sustainable Agriculture and Natural Resources, Tehran, Mehrarvand Institute of Technology-Promotional Group of Environmental Lovers, 22 February (in Persian).

  • Najmeddin, A., Keshavarzi, B., Moore, F., & Lahijanzadeh, A. (2017). Source apportionment and health risk assessment of potentially toxic elements in road dust from urban industrial areas of Ahvaz megacity, Iran. Environmental Geochemistry and Health, 1–22. https://doi.org/10.1007/s10653-017-0035-2.

  • Nematollahi, M. J., Ebrahimi, P., Razmara, M., & Ghasemi, A. (2016a). Hydrogeochemical investigations and groundwater quality assessment of Torbat-Zaveh plain, Khorasan Razavi, Iran. Environmental Monitoring and Assessment, 188(1), 2. https://doi.org/10.1007/s10661-015-4968-6.

    Article  CAS  Google Scholar 

  • Nematollahi, M.J., Ebrahimi, P., Ebrahimi, M. (2016b). Evaluating hydrogeochemical processes regulating groundwater quality in an unconfined aquifer. Environmental Processes, 3(4) pp 1021-1043. https://doi.org/10.1007/s40710-016-0192-9.

  • Nogol-e-Sadat, M. A. A. (1991). Comprehensive geological studies of Guilan Province. Rasht: Governmental Office of Guilan Province.

    Google Scholar 

  • Paluska, A., & Degens, E. T. (1980). Das Quartar Des Kaspischen Kustenvorlandes. Tehran: Geological Survey of Iran (translated to Persian).

    Google Scholar 

  • Parkhurst, D. L., & Appelo, C. (1999). User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Denver: U.S. Geological Survey.

    Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Transactions, American Geophysical Union, 25(6), 914–928.

    Article  Google Scholar 

  • Prasanna, M. V., Chidambaram, S., Hameed, A. S., & Srinivasamoorthy, K. (2010). Study of evaluation of groundwater in Gadilam basin using hydrogeochemical and isotope data. Environmental Monitoring and Assessment, 168(1–4), 63–90.

    Article  CAS  Google Scholar 

  • Rajesh, R., Brindha, K., Murugan, R., & Elango, L. (2012). Influence of hydrogeochemical processes on temporal changes in groundwater quality in a part of Nalgonda district, Andhra Pradesh, India. Environmental Earth Sciences, 65(4), 1203–1213.

    Article  CAS  Google Scholar 

  • Rajmohan, N., & Elango, L. (2004). Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins, Southern India. Environmental Geology, 46(1), 47–61.

    CAS  Google Scholar 

  • Ravikumar, P., Somashekar, R., & Angami, M. (2011). Hydrochemistry and evaluation of groundwater suitability for irrigation and drinking purposes in the Markandeya River basin, Belgaum District, Karnataka State, India. Environmental Monitoring and Assessment, 173(1–4), 459–487.

    Article  CAS  Google Scholar 

  • Reimann, C., Filzmoser, P., & Garrett, R. G. (2002). Factor analysis applied to regional geochemical data: problems and possibilities. Applied Geochemistry, 17(3), 185–206.

    Article  CAS  Google Scholar 

  • Rezaei, M., Davatgar, N., Tajdari, K., & Abolpour, B. (2010). Investigation the spatial variability of some important groundwater quality factors in Guilan, Iran. Journal of Water and Soil, 24(5), 932–941.

    Google Scholar 

  • Richards, L. (1954). Diagnosis and improvement of saline and alkali soils. United States Salinity Laboratory, U.S Department of Agriculture, Washington, p. 160

  • Robbins, J. A. (2010). Irrigation water for greenhouses and nurseries. Agriculture and Natural Resources, University of Arkansas, Division of Agriculture.

  • Saleh, A., Al-Ruwih, F., & Shehata, M. (1999). Hydrogeochemical process operating within the main aquifers of Kuwait. Journal of Arid Environments, 42, 195–209.

    Article  Google Scholar 

  • Sami, K. (1992). Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin, Eastern Cape, South Africa. Journal of Hydrology, 139, 27–48.

    Article  CAS  Google Scholar 

  • Sawyer, G., McMcarty, D., & Parkin, G. (2003). Chemistry for environmental engineering and science (5th ed.). New York: McGraw Hill Education.

    Google Scholar 

  • Schoeller, H. (1967). Geochemistry of groundwater: an international guide for research and practice. Unesco, Paris. Chap. 15, pp. 1-18. 

  • Seckin, G., Yilmaz, T., Sari, B., & Ersu, C. B. (2010). Groundwater hydrochemistry at the Mediterranean coastal plains—the case of Silifke, Turkey. Desalination, 253(1), 164–169.

    Article  CAS  Google Scholar 

  • Singh, A. K., Raj, B., Tiwari, A. K., & Mahato, M. K. (2013). Evaluation of hydrogeochemical processes and groundwater quality in the Jhansi district of Bundelkhand region, India. Environmental Earth Sciences, 70(3), 1225–1247.

    Article  CAS  Google Scholar 

  • Sonkamble, S., Agre, H., Madhnure, P., Chandra, S., & Ahmed, S. (2014). Hydrochemistry deducing basaltic trap thickness for groundwater resource mapping along the Deccan Volcanic Province (DVP) margin in India. Environmental Earth Sciences, 71(5), 2319–2332.

    Article  CAS  Google Scholar 

  • Sotohian, F., Hojjati Zolpirani, L., Sharifi Poshtiri, S. (2013). Evaluating pollution of water resources in Gilan province, 2nd National Symposium of Environmental Preservation and Programming, Hamedan, Hamandishan-e Mohit-e Zist-e Farda, 15 August (in Persian).

  • Srinivas, Y., Aghil, T. B., Oliver, D. H., Nair, C. N., & Chandrasekar, N. (2015). Hydrochemical characteristics and quality assessment of groundwater along the Manavalakurichi coast, Tamil Nadu, India. Applied Water Science, 1–10.

  • Stimson, J., Frape, S., Drimmie, R., & Rudolph, D. (2001). Isotopic and geochemical evidence of regional-scale anisotropy and interconnectivity of an alluvial fan system, Cochabamba Valley, Bolivia. Applied Geochemistry, 16, 1097–1114.

    Article  CAS  Google Scholar 

  • Stocklin, J. (1968). Structural history and tectonics of Iran: a review. American Association of Petroleum Geologists Bulletin, 52(7), 1229–1258.

    Google Scholar 

  • Stöcklin, J. (1974). Possible ancient continental margins in Iran (pp. 1009). (The geology of continental margins). Berlin: Springer Verlag.

  • Subba Rao, N. (2006). Seasonal variation of groundwater quality in a part of Guntur district, Andhra Pradesh, India. Environmental Earth Sciences, 49, 413–429.

    Google Scholar 

  • Subrahmanyam, K., & Yadaiah, P. (2000). Assessment of the impact of industrial effluents on water quality in Patancheru and environs, Medak district, Andhra Pradesh, India. Hydrogeology Journal, 9(3), 297–312. https://doi.org/10.1007/s100400000120.

    Article  Google Scholar 

  • Tatawat, R. K., & Chandel, C. S. (2008). A hydrochemical profile for assessing the groundwater quality of Jaipur City. Environmental Monitoring and Assessment, 143(1–3), 337–343.

    Article  CAS  Google Scholar 

  • Tay, C. K. (2012). Hydrochemistry of groundwater in the Savelugu–Nanton District, Northern Ghana. Environmental Earth Sciences, 67(7), 2077–2087.

    Article  CAS  Google Scholar 

  • Tijani, M. N. (1994). Hydrogeochemical assessment of groundwater in Moro area, Kwara State, Nigeria. Environmental Geology, 24(3), 194–202.

    Article  CAS  Google Scholar 

  • Todd, D. K. (1980). Groundwater hydrology. New York: Wiley.

    Google Scholar 

  • Todd, D. K., & Mays, L. W. (2005). Groundwater hydrology edition. New Jersey: Wiley.

    Google Scholar 

  • Trabelsi, R., Abid, K., & Zouari, K. (2012). Geochemistry processes of the Djeffara palaeogroundwater (Southeastern Tunisia). Quaternary International, 257, 43–55.

    Article  Google Scholar 

  • Heath, R. C. (1983). Basic ground-water hydrology. US Geological Survey, Reston, VA, N. 2220, p. 86

  • Wang, X., Cai, Q., Ye, L., & Qu, X. (2012). Evaluation of spatial and temporal variation in stream water quality by multivariate statistical techniques: a case study of the Xiangxi River Basin, China. Quaternary International. https://doi.org/10.1016/j.quaint.2012.15.015.

  • WHO. (2008). Guidelines for drinking-water quality: incorporating first and second addenda to third edition, Vol. 1, recommendations. Geneva: WHO Press.

    Google Scholar 

  • Wilcox. (1955). Classification and use of irrigation waters. Washington, DC: U.S. Department of Agriculture.

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Gilan regional water organization experts for making this study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Nematollahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nematollahi, M.J., Clark, M.J.R., Ebrahimi, P. et al. Preliminary assessment of groundwater hydrogeochemistry within Gilan, a northern province of Iran. Environ Monit Assess 190, 242 (2018). https://doi.org/10.1007/s10661-018-6543-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6543-4

Keywords

Navigation