Skip to main content

Advertisement

Log in

Hydrochemical characterization and pollution assessment of groundwater in Jammu Siwaliks, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Physico-chemical groundwater (GW) parameters were evaluated to understand the hydrogeochemical processes in the Siwalik plains of Jammu and Kashmir, India. During the 2012–2013 post-monsoon (POM) and pre-monsoon (PRM) seasons, GW samples (n = 207) from deep bore wells and shallow open wells were chemically analysed. Cations (Ca2+, Mg2+, Na+, K+ and Fe2+) and anions (HCO3 , Cl, SO4 2− and F) showed a wide spatio-temporal variation. Results suggest that weathering and dissolution of carbonates and silicate rocks is the main source of water mineralization. The major hydrochemical facies is characterized by Ca-Mg-HCO3 and Ca-HCO3 during the PRM and POM seasons respectively. The presence of sulphate-bearing water in a large number of the samples indicates a significant role of gypsum dissolution and anthropogenic contamination of the GW. Factor analysis (FA) and hierarchical cluster analysis (HCA) revealed that the variability of hydrochemistry is mainly related to rock-water interaction, dissolution of carbonates and other lithological units as well as the influence of anthropogenic activities in the area. Overall, it was found that the GW quality is within the limits of human consumption. The higher concentration of a few chemicals indicates an increasing trend of industrial contamination of the GW. For sustainable development of the portable GW in Siwaliks, it is necessary to minimize the adverse impacts of the anthropogenic and industrial contamination on the GW resources through best management practices and prevent its further contamination to a level that could make GW unsuitable for human uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abid, I. A., Abbasi, I. A., Khan, M. A., & Shah, M. T. (1983). Petrography and geochemistry of the Siwalik sandstone and its relationship to the Himalayan orogeny. Geological Bulletin University of Peshawar, 16, 65–83.

    Google Scholar 

  • Amadi, A. N., Olasehinde, P. I., Yisa, J., Okosun, E. A., Nwankwoala, H. O., & Alkali, Y. B. (2013). Geostatistical assessment of groundwater quality from coastal aquifers of eastern Niger Delta, Nigeria. Geosciences, 2(3), 51–59.

    Google Scholar 

  • APHA (American Public Health Association) (1998). Standard methods for the examination of water and wastewater 19th edition.

  • Arora, S. (2011). Sustainable water resource management in the foothills of the Siwaliks, Northwest India. Groundwater Management Practices 93.

  • Avvannavar, S. M., & Shrihari, S. (2008). Evaluation of water quality index for drinking purposes for river Netravathi, Mangalore, South India. Environmental Monitoring and Assessment, 143(1–3), 279–290.

    Article  CAS  Google Scholar 

  • Batayneh, A., & Zumlot, T. (2012). Multivariate statistical approach to geochemical methods in water quality factor identification; application to the shallow aquifer system of the Yarmouk Basin of North Jordan. Research Journal of Environmental and Earth Sciences, 4(7), 756–768.

    CAS  Google Scholar 

  • Belkhiri, L., Boudoukha, A., Mouni, L., & Baouz, T. (2011). Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater-a case study: Ain Azel plain (Algeria). Geoderma, 159(3–4), 390–398.

    Google Scholar 

  • Bicalho, C. C., Batiot-Guilhe, C., Seidel, J. L., Van Exter, S., & Jourde, H. (2012). Geochemical evidence of water source characterization and hydrodynamic responses in a karst aquifer. Journal of Hydrology, 450–451, 206–218.

    Article  Google Scholar 

  • BIS (Bureau of Indian Standards) 10500 (1991). Indian Standard drinking water-specification 1st review, 1–8.

  • Cloutier, V., Lefebvre, R., Therrien, R., & Savard, M. M. (2008a). Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Journal of Hydrology, 353, 294–313.

    Article  CAS  Google Scholar 

  • Cloutier, V., Lefebvre, R., Therrien, R., & Savard, M. M. (2008b). Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Journal of Hydrology, 353(3), 294–313.

    Article  CAS  Google Scholar 

  • Dar, R. A., Rashid, I., Romshoo, S. A., & Marazi, A. (2013). Sustainability of winter tourism in a changing climate over Kashmir Himalaya. Environmental Monitoring and Assessment, 186(4), 2549–2562.

    Article  Google Scholar 

  • Dar, F. A., Perrin, J., Ahmed, S., Narayana, A. C., & Riotte, J. (2014). Hydrogeochemical characteristics of Karst Aquifer from a semi-arid region of southern India and impact of rainfall recharge on groundwater chemistry. Arabian Journal of Geosciences, 8(5), 2739–2750.

    Article  Google Scholar 

  • Dassi, L. (2011). Investigation by multivariate analysis of groundwater composition in a multilayer aquifer system from North Africa: a multi-tracer approach. Appl. Geochemistry, 26(8), 1386–1398.

    Article  CAS  Google Scholar 

  • Davis, J. C. (2002). Statistics and data analysis in geology. New York: Wiley 638 p.

    Google Scholar 

  • Edmunds, W. M., Carrillo-Rivera, J. J., & Cardona, A. (2002). Geochemical evolution of groundwater beneath Mexico City. Journal of Hydrology, 258(1), 1–24.

    Article  CAS  Google Scholar 

  • Farnham, I. M., Johannesson, K. H., Singh, A. K., Hodge, V. F., & Stetzenbach, K. J. (2003). Factor analytical approaches for evaluating groundwater trace element chemistry data. Analytical ChimicaActa, 490, 123–138.

    Article  CAS  Google Scholar 

  • Fitzpatrick, M. L., Long, D. T., & Pijanowski, B. C. (2007). Exploring the effects of urban and agricultural land use on surface water chemistry, across a regional watershed, using multivariate statistics. Applied Geochemistry, 22(8), 1825–1840.

    Article  CAS  Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater, pp 604.

  • Ganjoo, R. K., & Shaker, S. (2007). Middle Miocene pedological record of monsoonal climate from NW Himalaya (Jammu and Kashmir State), India. Journal of Asian Earth Sciences, 29, 704–714.

    Article  Google Scholar 

  • Guler, C., Thyne, G. D., McCray, J. E., & Turner, A. K. (2002). Evaluation of graphical and multivariate statistical method for classification of water chemistry data. Hydrogeology Journal, 10(4), 455–474.

    Article  CAS  Google Scholar 

  • Helsel, D. R., & Hirsch, R. M. (1992). Statistical methods in water resources (Vol. 49). Elsevier.

  • Hossain, H. M., Ulak, P. D., & Roser, B. (2008). Geochemical analyses of sandstones and mudstones from the Siwalik succession, SuraiKhola, western Nepal. Geoscience Rept. Shimane University, 2727, 53–60.

    Google Scholar 

  • Hussain, M., Ahmed, S. M., & Abderrahman, W. (2008). Cluster analysis and quality assessment of logged water at an irrigation project, eastern Saudi Arabia. Journal of Environmental Management, 86(1), 297–307.

    Article  CAS  Google Scholar 

  • Iglewicz, B., Hoaglin, D. (1993). How to detect and handle outliers. The ASQC Basic References in Quality Control: Statistical Techniques, Volume 16. Ed. Edward F. Mykytka.

  • Jasrotia, A. S., & Kumar, A. (2014). Groundwater quality mapping based on the geographical information system (GIS) of Jammu District, Jammu and Kashmir India. Journal of Spatial Hydrology, 12(1), 1–21.

    Google Scholar 

  • Jasrotia, A. S., & Singh, R. (2007). Hydrochemistry and groundwater quality around Devak and Rui watersheds of Jammu region, Jammu and Kashmir. Journal of the Geological Society of India, 69(5), 1042–1054.

    CAS  Google Scholar 

  • Kanwar, P., & Bhatti, R. (2014). Assessment of chemical quality of groundwater in the equivalents of Bhahbar and Taryai belts of Jammu district, J&K. Journal of Himalayan Ecology and Sustainable development, 7, 6–11.

    Google Scholar 

  • Khair, S. M., Mushtaq, S., & Reardon-Smith, K. (2014). Groundwater governance in a water-starved country: public policy, farmers’ perceptions, and drivers of Tubewell adoption in Balochistan, Pakistan. Groundwater, 53(4), 626–637.

    Article  Google Scholar 

  • Kingsbury, J. A., & Shelton, J. M. (2002). Water quality of the Mississippian carbonate aquifer in parts of middle Tennessee and Northern Alabama, 1999 (Vol. 2, No. 4083). US Department of the Interior, US Geological Survey.

  • Kumar, K. R., Sahai, A. K., Krishna, K. K., Patwardhan, K., Mishra, P. K., Revadekar, J. V., Kamala, K., & Pant, G. B. (2006). High resolution climate change scenarios for India for the 21st century. Current Science, 90(3), 334–345.

    Google Scholar 

  • Lang, Y. C., Liu, C. Q., Zhao, Z. Q., Li, S. L., & Han, G. L. (2006). Geochemistry of surface and ground water in Guiyang, China: water/rock interaction and pollution in a karst hydrological system. Applied Geochemistry, 21, 887–903.

    Article  CAS  Google Scholar 

  • Langelier, W. F., & Ludwig, H. F. (1941). Graphical method for indicating of the mineral character of natural waters. Journal of American Water Works Association, 34, 335–352.

    Google Scholar 

  • Langmuir, M. (1971). The geochemistry of some carbonate ground waters in central Pennsylvania. Geochimica et Cosmochimica Acta, 35, 1023–1045.

    Article  CAS  Google Scholar 

  • Lillesand, T. M., & Kiefer, R. W. (1979). Remote sensing and image interpretation. John Wiley & Sons.

  • Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. The Science of the Total Environment, 313, 77–89.

    Article  CAS  Google Scholar 

  • Long, D. T., Voice, T. C., Niagolova, N. D., & McElmurry, S. P. (2012). Effects of human activities on karst groundwater geochemistry in a rural area in the Balkans. Applied Geochemistry, 27(10), 1920–1931.

    Article  CAS  Google Scholar 

  • Love, D. D., Hallbauer, A. A., & Hranova, R. (2004). Factor analysis as a tool in ground water quality management: two southern African case studies. Physics and Chemistry of the Earth, 29(15–18), 1135–1143.

    Article  Google Scholar 

  • Milovanovic, M. (2007). Water quality assessment and determination of pollution sources along the Axios/Vardar River, southeastern Europe. Desalination, 213(1), 159–173.

    Article  CAS  Google Scholar 

  • Molina-Navarro, E., Sastre-Merlín, A., Vicente, R., & Martínez-Pérez, S. (2014). Hydrogeology and hydrogeochemistry at a site of strategic importance: the ParejaLimno-reservoir drainage basin (Guadalajara, Central Spain). Hydrogeology Journal, 22(5), 1115–1129.

    Article  CAS  Google Scholar 

  • Moore, P. J., Martin, J. B., & Screaton, E. J. (2009). Geochemical and statistical evidence of recharge, mixing, and controls on spring discharge in an ecogenetic karst aquifer. J. Hydrology, 376(3–4), 443–455.

    Article  CAS  Google Scholar 

  • Moral, F., Cruz-Sanjulián, J. J., & Olías, M. (2008). Geochemical evolution of groundwater in the carbonate aquifers of sierra de Segura (Betic Cordillera, southern Spain). J. Hydrology, 360(1–4), 281–296.

    Article  CAS  Google Scholar 

  • Nadiri, A. A., Chitsazan, N., Tsai, F. T. C., & Moghaddam, A. A. (2013). Bayesian artificial intelligence model averaging for hydraulic conductivity estimation. Journal of Hydrologic Engineering, 19(3), 520–532.

    Article  Google Scholar 

  • Naik, S., & Purohit, K. M. (2001). Studies on water quality of river Brahmani in Sundargarh district, Orissa. Indian Journal of Environment and Ecoplanning, 5(2), 397–402.

    Google Scholar 

  • Olajire, A. A., & Imeokparia, F. E. (2001). Water quality assessment of Osun River: studies on inorganic nutrients. Environmental Monitoring Assessment, 69(1), 17–28.

    Article  CAS  Google Scholar 

  • Peterson, B. J., Wollheim, W. M., Mulholland, P. J., Webster, J. R., Meyer, J. L., Tank, J. L., et al. (2001). Control of nitrogen export fromwatersheds by headwater streams. Science, 292, 86–90.

    Article  CAS  Google Scholar 

  • Piper, A. M. A. (1953). Graphic procedure in the geochemical interpretation of water analysis. Groundwater Note 12. United State Geological Survey.

  • Prasad, R. (1998). Fertilizer urea, food security, health and the environments. Current Science, 75, 667–683.

    Google Scholar 

  • Prasanna, M. V., Chidambaram, S., Hameed, A. S., & Srinivasamoorthy, K. (2011). Hydrogeochemical analysis and evaluation of groundwater quality in the Gadilam river basin, Tamil Nadu, India. Journal of Earth System Science, 120(1), 85–98.

    Article  CAS  Google Scholar 

  • Rao, N. S. (2006). Seasonal variation of groundwater quality in a part of Guntur District, Andhra Pradesh, India. Environmental Geology, 49(3), 413–429.

    Article  CAS  Google Scholar 

  • Rashid, I., & Romshoo, S. A. (2012). Impact of anthropogenic activities on water quality of Lidder River in Kashmir Himalayas. Environmental Monitoring and Assessment. doi:10.1007/s10661-012-2898-0.

    Google Scholar 

  • Romshoo, S. A., & Rashid, I. (2014). Assessing the impacts of changing land cover and climate on Hokersar wetland in Indian Himalayas. Arabian Journal Geosciences, 7(1), 143–160.

    Article  Google Scholar 

  • Romshoo, S. A., Dar, R. A., Rashid, I., Marazi, A., Ali, N., & Zaz S. (2015). Implications of shrinking cryosphere under changing climate on the streamflows in the Lidder catchment in the Upper Indus Basin, India. Arctic Antarctic and Alpine Research, 47 (4).

  • Saunders, J. A., & Toran, L. E. (1994). Evidence for dedolomitization and mixing in Paleozoic carbonates near Oak Ridge, Tennessee. Groundwater, 32(2), 207–214.

    Article  CAS  Google Scholar 

  • Schot, P. P., & Van der Wal, J. (1992). Human impact on regional groundwater composition through intervention in natural flow patterns and changes in land use. Journal of Hydrology, 134(1), 297–313.

    Article  CAS  Google Scholar 

  • Sharma, K. K., Sharma, A., & Kour, A. (2013). Assessment of fluoride in ground and surface water bodies and its seasonal variation at Bishnah Tehsil of Jammu district, J&K: Correlation with physico-chemical parameters. International Journal of Recent Scientific Research, 4(11), 1743–1747.

    Google Scholar 

  • Showqi, I., Rashid, I., & Romshoo, S. A. (2013). Land use land cover dynamics as a function of changing demography and hydrology. Geo Journal, 79(3), 297–307. doi:10.1007/s10708-013-9494-x.

    Google Scholar 

  • Singh, P., & Bengtsson, L. (2005). Impact of warmer climate on melt and evaporation for the rain fed, snow fed and glaciered basins in the Himalayan region. Journal of Hydrology, 300, 140–154.

    Article  Google Scholar 

  • Singh, P., & Kumar, N. (1997). Impact assessment of climate change on the hydrological response of a snow and glacier melt runoff dominated Himalayan River. Journal of Hydrology, 193, 316–330.

    Article  Google Scholar 

  • Sinha, S., Islam, R., Ghosh, S. K., Kumar, R., & Sangode, S. J. (2007). Geochemistry of Neogene Siwalik mudstones along Punjab re-entrant, India: Implications for source-area weathering, provenance and tectonic setting. Current Science, 92(8), 1103–1113.

    CAS  Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1969). Biometry: the principles and practice of statistics in biological research. New York: W.H. Freeman and Co.

    Google Scholar 

  • Spalding, R. F., Exner, M. E., Martin, G. E., & Snow, D. D. (1993). Effects of sludge disposal on groundwater nitrate concentrations. Journal of Hydrology, 142, 213–228.

    Article  CAS  Google Scholar 

  • StatSoft Inc. (2004). STATISTICA (Data Analysis Software System), Version 6.

  • Steinhorst, R. K., & Williams, R. E. (1985). Discrimination of groundwater sources using cluster analysis, MANOVA, canonical analysis and discriminant analysis. Water Resources Research, 21(8), 1149–1156.

    Article  CAS  Google Scholar 

  • SubbaRao, N. (1997). Studies on water quality index in hard rock terrain of Guntur district, Andhra Pradesh, India, In: National Seminar on Hydrology of Precambrian Terrains and hard rock areas, 129–134.

  • Subyani, A. M., & Al Ahmadi, M. E. (2010). Multivariate statistical analysis of groundwater quality in WadiRanyah, Saudi Arabia. Earth Sciences, 21(2), 29–44.

    Google Scholar 

  • Suresh, T. S., Nagma, C., & Srinivas, G. (1991). Study of water quality for agricultural use in Hemavathyriver (Karnataka). Hydrology Journal, 14(4), 247–254.

    Google Scholar 

  • Thakur, V. C., & Rawat, B. S. (1992). Geological map of the Western Himalaya. Survey of India.

  • Tizro, A. T., & Voudouris, K. S. (2008). Groundwater quality in the semi-arid region of the Chahardouly basin, West Iran. Hydrological Processes, 22(16), 3066–3078.

    Article  CAS  Google Scholar 

  • Todd, D. K., & Mays, L. W. (2005). Groundwater hydrology edition. (Vol. 1625). Wiley, New Jersey.

  • Ullah, K., Arif, M., Shah, M. T., & Abbasi, I. A. (2009). The lower and middle Siwaliks fluvial depositional system of western Himalayan foreland basin, Kohat, Pakistan. Journal of Himalayan Earth Sciences, 42, 61–85.

    Google Scholar 

  • USEPA (1989). Ground-Water Monitoring in Karst Terranes-Recommended Protocols & Implicit Assumptions. (EPA/600/X-89/050), p 88. http://www.epa.gov/oust/cat/gwkarst.pdf.

  • Valiela, I., & Bowen, J. L. (2002). Nitrogen sources to watersheds and estuaries: role of land cover mosaics and losses within watersheds. Environmental Pollution, 118(2), 239–248.

    Article  CAS  Google Scholar 

  • Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Ganthi, R. R., Chidambaram, S., Anandhan, P., Manivannan, R., & Vasudevan, S. (2010). Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environmental Monitoring and Assessment, 171(1–4), 595–609.

    Article  CAS  Google Scholar 

  • Ward Jr., J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244.

    Article  Google Scholar 

  • Wayland, K. G., Long, D. T., Hyndman, D. W., Pijanowski, B. C., Woodhams, S. M., & Haack, S. K. (2003). Identifying relationships between base flow geochemistry and land use with synoptic sampling and R-mode factor analysis. Journal of Environmental Quality, 32(1), 180–190.

    Article  CAS  Google Scholar 

  • WHO (1996). Guidelines for drinking water quality. World Health Organization, Geneva, 1, 53–73.

    Google Scholar 

  • WHO (2014). Malaria rapid diagnostic test performance: results of WHO product testing of malaria RDTs: round 5 (2013). World Health Organization.

  • Wu, P., Tang, C., Zhu, L., Liu, L., Cha, X., & Tao, X. (2009). Hydrogeochemical characteristics of surface water and groundwater in the karst basin, Southwest China. Hydrological Processes, 23, 2012–2022.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work has been accomplished under a research grant provided by the National Remote Sensing Centre (NRSC), ISRO, Hyderabad for the project titled “Rajiv Gandhi National Drinking Water Mission (RGNDWM)-Phase IV”. The authors express their gratitude to the funding agency for the financial assistance. The authors are grateful to the anonymous reviewers for their valuable comments and suggestions on the earlier version of the manuscript that has greatly improved its content and structure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reyaz Ahmad Dar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romshoo, S.A., Dar, R.A., Murtaza, K.O. et al. Hydrochemical characterization and pollution assessment of groundwater in Jammu Siwaliks, India. Environ Monit Assess 189, 122 (2017). https://doi.org/10.1007/s10661-017-5860-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5860-3

Keywords

Navigation