Skip to main content

Advertisement

Log in

Assessing the impacts of changing land cover and climate on Hokersar wetland in Indian Himalayas

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Monitoring the spatiotemporal changes in wetlands and assessing their causal factors is critical for developing robust strategies for the conservation and restoration of these ecologically important ecosystems. In this study, the spatiotemporal changes in the land cover system within a Himalayan wetland and its catchment were assessed and correlated using a time series of satellite, historical, and field data. Significant changes in the spatial extent, water depth, and the land system of the Hokersar wetland were observed from the spatiotemporal analysis of the data from 1969 to 2008. The wetland area has shrunk from 18.75 km2 in 1969 to 13 km2 in 2008 with drastic reduction in the water depth of the wetland. The marshy lands, habitat of the migratory birds, have shrunk from 16.3 km2 in 1969 to 5.62 km2 in 2008 and have been colonized by various other land cover types. The land system and water extent changes within the wetland were related to the spatiotemporal changes in the land cover and hydrometeorological variables at the catchment scale. Significant changes in the forest cover (88.33–55.78 km2), settlement (4.63–15.35 km2), and water bodies (1.75–0.51 km2) were observed in the catchment. It is concluded that the urbanization, deforestation, changes in the hydrologic and climatic conditions, and other land system changes observed in the catchment are the main causes responsible for the depleting wetland extent, water depth, and biodiversity by adversely influencing the hydrologic erosion and other land surface processes in the catchment. All these causes and effects are manifest in the form of deterioration of the water quality, water quantity, the biodiversity changes, and the decreasing migratory bird population in the wetland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Akhtar M, Ahmad N, Booij MJ (2008) The impact of climate change on the water resources of Hindukush–Karakorum–Himalaya region under different glacier coverage scenarios. J Hydrol 355:148–163

    Article  Google Scholar 

  • Aldous A, Fitzsimons J, Richter B, Bach L (2011) Droughts, floods and freshwater ecosystems: evaluating climate change impacts and developing adaptation strategies. Mar Freshw Res 62(3):2230–2231. doi:10.1071/MF09285

    Article  Google Scholar 

  • Anonymous (1990) Directory of wetlands in India. Ministry of Environment and Forests, Government of India, New Delhi, p 52

    Google Scholar 

  • Baker C, Lawerence R, Montagne C, Pattern D (2007) Change detection of wetland ecosystem using Landsat imagery and change vector analysis. Wetlands 27(3):610–619

    Article  Google Scholar 

  • Basnyat P, Teeter LD, Lockaby GG, Flynn KM (2000) The use of remote sensing and GIs in watershed level analyses of non-point source pollution problems. For Ecol Manag 128:65–73

    Article  Google Scholar 

  • Birkett CM (1995) The global remote sensing of lakes, wetlands and rivers for hydrological and climate research. Proceedings of IEEE IGARSS Conference, Firenze, pp. 1979–1981

  • Bourgeau-Chavez LL, Kasischke ES, Brunzell SM, Mudd JP, Smith KB, Frick AL (2001) Analysis of space-borne SAR data for wetland mapping in Virginia riparian ecosystems. Int J Remote Sens 22(18):3665–3687

    Article  Google Scholar 

  • Bullock A, Acreman M (2003) The role of wetlands in the hydrological cycle. Hydrol Earth Syst Sci 7(3):358–389

    Article  Google Scholar 

  • Costanza R, D’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Rsakin RG, Sutton P, Van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  Google Scholar 

  • Dahal N (2005) Perceptions in the Himalayas. Tiempo 56:19–24

    Google Scholar 

  • Dar GH, Bhagat RC, Khan MA (2002) Biodiversity of Kashmir Himalayas. Valley, Srinagar, p 399

    Google Scholar 

  • Davis TJ (1993) Towards the wise use of wetlands. Ramsar Convention Bureau, Kuala Lampur, p 45

    Google Scholar 

  • DEARS (2001) Land use/land cover mapping of Jammu and Kashmir State—a report Directorate of Environment, Ecology and Remote Sensing, Government of Jammu and Kashmir, p 92

  • Donner S (2003) The impact of cropland cover on river nutrient levels in the Mississippi River Basin. Glob Ecol Biogeogr 12(4):341–355

    Article  Google Scholar 

  • Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sens Environ 80(1):185–201

    Article  Google Scholar 

  • Fu KS (1976) Pattern recognition in remote sensing of the Earth resources. IEEE Trans Geosci Electron 14(1):10–18

    Article  Google Scholar 

  • Funk DE, Pullman E, Peterson K, Crill P, Billings W (1994) Influence of water table on carbon dioxide, carbon monoxide and methane flux from taiga bog microcosms. Glob Biogeochem Cycles 8(3):271–278

    Article  Google Scholar 

  • Gangoo SA, Makaya AS (2000) Changes in vegetation pattern of Hokersar (Wetland reserve), Kashmir. In: Environmental Biodiversity and Conservation, p. 170–112

  • Garg JK, Singh TS, Murthy TVR (1998) Wetlands of India. Project report: RSAM/SAC/resa/pr/01/98. Space Application Centre, Indian Space Research Organization (ISRO), Ahmadabad, p 240

    Google Scholar 

  • Gillies RR, Box JB, Symanzik J, Rodemaker EJ (2003) Effects of urbanization on the aquatic fauna of the Line Creek Watershed, Atlanta—a satellite perspective. Remote Sens Environ 86(3):411–422

    Article  Google Scholar 

  • Gondwe BRN, Sang-Hoon H, Wdowinski S, Bauer-Gottwein P (2010) Hydrologic dynamics of the ground-water dependent Sian Ka’an wetlands, Mexico, derived from InSAR and SAR data. Wetlands 30:1–13

    Article  Google Scholar 

  • Handoo JK (1978) Ecological and production studies of some typical wetlands of Kashmir. Ph.D Thesis, University of Kashmir, Srinagar, 141 p

  • Handoo JK, Kaul V (1982) Phytosociological and standing crop studies in wetlands of Kashmir. In: Gopal B, Turner RE, Wetzel RG, Whigam DF (eds) Wetlands: ecology and management, part1. National Institute of Ecology and International Scientific Publication, Jaipur, pp 187–197

    Google Scholar 

  • Hess LL, Melack JM, Filoso S, Wang Y (1995) Delineation of inundated area and vegetation along the Amazon floodplain with SIR-C synthetic aperture radar. IEEE Trans Geosci Remote Sens 33(4):896–904

    Article  Google Scholar 

  • Hruby T (1995) Estimating relative wetland values for regional planning. Wetlands 15(2):93–107

    Article  Google Scholar 

  • Humayun R, Joshi PK (2000) Evaluation of waterfowl habitat in Hokersar Wetland Reserve, Jammu & Kashmir: a geospatial approach. PG Diploma Dissertation Report, IIRS, Dehradun, India, p 37

  • ICIMOD (2009) The changing Himalayas: impact of climate change on water resources and livelihoods in the Greater Himalayas. International Centre for Integrated Mountain Development, Kathmandu, Nepal, p 25

    Google Scholar 

  • International Union for Pure and Applied Chemistry (IUPAC) (1997) Henry’s Law: IUPAC Compendium of Chemical Terminology. 2nd Edition

  • International Union for Pure and Applied Chemistry (IUPAC) (1997) Compendium of Chemical Terminology, 2nd ed. Online version: http://goldbook.iupac.org/H02783.html. Accessed on: 24th March

  • ISRO (2005) NNRMS standards: a national standard for EO images, thematic and cartographic maps, GIS databases and spatial outputs. ISRO NNRMS Tech Rep No 112:235pp

    Google Scholar 

  • Joshi PK, Humayun R, Roy PS (2002) Landscape dynamics in Hokersar wetland—an application of geospatial approach. J Indian Soc Remote Sens 30(1&2):2002

    Google Scholar 

  • Kak AM (1990) Aquatic and wetland vegetation of Kashmir Himalaya. J Econ Taxon Bot 14(1):1–14

    Google Scholar 

  • Kapetsky JM (1987) Satellite remote sensing to locate and inventory small water bodies for fishing management and aquaculture development in Zimbabwe, CIFA Occasional Paper, no. 14. Rome: FAO (Fisheries and Aquaculture Department). http://www.fao.org/docrep/008/ad768e/ad768e00.htm. Accessed: 1 March 2012

  • Kaul S (1982) Community architecture, biomass and production in some typical wetlands of Kashmir. Indian J Ecol 9:320–329

    Google Scholar 

  • Kaul V, Zutshi DP (1967) A study of aquatic and marshland vegetation of Srinagar lakes. Proc Natl Inst Sci India 33B:111–128

    Google Scholar 

  • Khan MA (2000) Wetland biodiversity in the Kashmir Himalaya: assessment and conservation strategies. In: Khan MA (ed) Environmental biodiversity and conservation. APH Publishing, New Delhi, pp 69–93

    Google Scholar 

  • Kingsford RT (2011) Conservation management of rivers and wetlands under climate change—a synthesis. Mar Freshw Res 62(3):217–222

    Article  Google Scholar 

  • Klausmeyer KR, Shaw MR (2009) Climate change, habitat loss, protected areas and the climate adaptation potential of species in Mediterranean ecosystems worldwide. PLoS One 4(7):e6392. doi:10.1371/journal.pone.0006392

    Article  Google Scholar 

  • Kraiem H (2002) Biophysical and socio-economic impacts of climate change on wetlands in Mediterranean. Proceedings of the Mediterranean Regional Workshop on Water, Wetlands and Climate Change: Building Linkages for their Integrated Management, Athens, Greece, 10–11December, 2002

  • Lyon J (2001) Wetland landscape characterization: GIS, remote sensing and image analysis. Ann Arbor Press, Chelsea, p 160

    Google Scholar 

  • Millennium Ecosystem Assessment (MEA) (2005) Ecosystems and human wellbeing: wetlands and water synthesis. World Resources Institute, Washington, p 80

    Google Scholar 

  • Mitsch WI, Gosselink IG (1986) Wetlands. Van Nostrand Reinhold, New York

    Google Scholar 

  • Munyati C (2000) Wetland change detection on the Kafue Flats, Zambia, by classification of a multi-temporal remote sensing image dataset. Int J Remote Sens 21(9):1787–1806

    Article  Google Scholar 

  • O’Reilly CM, Alin SR, Pilsnier PD, Cohen AS, McKee BA (2003) Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 424:766–768

    Article  Google Scholar 

  • Olmanson LG, Bauer ME, Brezonik PL (2002) Aquatic vegetation surveys using high resolution IKONOS imagery. Proceedings of the ISPRS Commission-IV Symposium Integrated Remote Sensing at the Global, Regional and Local Scales, 10–15 Nov 2002, Denver, CO USA

  • Omernik JM, Abernathy AR, Male LM (1981) Stream nutrient levels and proximity of agricultural and forest lands to streams: some relationships. J Soil Water Conserv 36:227–231

    Google Scholar 

  • Ozesmi SL, Bauer ME (2002) Satellite remote sensing of wetlands. Wetl Ecol Manag 10(5):381–402

    Article  Google Scholar 

  • Pal S, Akoma OC (2009) Water scarcity in wetland area within Kandi Block of West Bengal: a hydro-ecological assessment. Ethiop J Environ Stud Manag 2(3):1–12

    Article  Google Scholar 

  • Palmer MA, Lettenmaier DP, Poff NL, Postel SL, Richter B, Warner R (2009) Climate change and river ecosystems: protection and adaptation options. Environ Manag 44(6):1053–1068. doi:10.1007/S00267-009-9329-1

    Article  Google Scholar 

  • Pandit AK (1980) Biotic factor and food chain structure in some typical wetlands of Kashmir. Ph.D. Thesis. University of Kashmir, Srinagar, J&K

  • Pandit AK, Kumar R (2006) Comparative studies on ecology of Hokersar wetland, Kashmir: present and past. J Himal Ecol Sustain Dev 1:73–81

    Google Scholar 

  • Poppe L, Rutherford I, Price P, Lovett S (2006) River and riparian land management: controlling willows along Australian rivers. Technical guideline No. 6, Land and Water Australia. Australian Govt, Canberra, p 17

    Google Scholar 

  • Ramsey EW (1998) Radar remote sensing of wetlands. In: Lunetta RS, Elvidge CD (eds) Remote sensing change detection: environmental monitoring methods and applications. Ann Arbor Press, Chelsea, p 318

    Google Scholar 

  • Rashid M, Lone MA, Romshoo SA (2011) Geospatial tools for assessing land degradation in Budgam district, Kashmir Himalaya. J Earth Syst Sci 120(3):423–434

    Article  Google Scholar 

  • Rather SA, Pandit AK (2002) Phytoplankton dynamics in Hokersar wetland, Kashmir. J Res Dev 2:25–46

    Google Scholar 

  • Rather SA, Bhat SA, Pandit AK (2001) Water quality of Hokersar, a typical wetland of Kashmir. J Res Dev 1:38–43

    Google Scholar 

  • Roeck ER, Verhoest NEC, Miya MH, Lievens H, Batelaan O, Thomas A, Brendonck L (2008) Remote sensing and wetland ecology: a South African case study. Sensors 8(5):3542–3556

    Article  Google Scholar 

  • Romshoo SA (2004) Radar remote sensing for monitoring of dynamic ecosystem processes related to biogeochemical exchanges in tropical peatlands. Vis Geosci 9(1):9–28

    Article  Google Scholar 

  • Romshoo SA, Muslim M (2011) Geospatial modelling for assessing the nutrient load of a Himalayan lake. Environ Earth Sci. doi:10.1007/s12665-011-0944-9

  • Romshoo SA, Sumira J (2010) Geospatial tools for watershed characterization of the Dudhganga catchment, Jhelum basin. PG Diploma Dissertation (RS &GIS), Department of Geology and Geophysics, University of Kashmir, Srinagar, India, 123p

  • Romshoo SA, Ali N, Rashid I (2011) Geoinformatics for characterizing and understanding the spatio-temporal dynamics (1969–2008) of Hokarser wetland in Kashmir Himalayas. Int J Phys Sci 6(5):1026–1038

    Google Scholar 

  • Romshoo SA, Qadri T, Rashid I, Muslim M, Panigrahy S, Singh TS, Patel JG (2010) National Wetland Atlas: Jammu and Kashmir. SAC/RESA/AFEG/NWIA/ATLAS/16/2010. Space Applications Centre, ISRO, Ahmadabad, p 176

    Google Scholar 

  • Saxena RK, Verma KS, Chary GR, Srivastava R, Barthwal AK (2000) IRC-IC data application in watershed characterization and management. Int J Remote Sens 21(17):3197–3208

    Article  Google Scholar 

  • Schmid T, Koch M, Gumuzzio J (2005) Multisensor approach to determine changes of wetland characteristics in semiarid environments (Central Spain). IEEE Trans Geosci Remote Sens 43(11):2516–2525

    Article  Google Scholar 

  • Tanis FJ, Bourgeau-Chavez LL, Dobson MC (1994) Applications of ERS-1 SAR for coastal inundation. Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS’94), Pasadena, California, 8–12 August 1994, IEEE Catalog no. 94CH3378-7, pp. 1481–1483

  • Touzi R, Deschamps A, Rother G (2007) Wetland characterization using polarimetric RADARSAT-2 capability. Can J Remote Sens 33(1):56–67

    Article  Google Scholar 

  • Tso B, Mather PM (2001) Classification methods for remotely sensed data. Taylor and Francis, UK, pp 186–229

    Book  Google Scholar 

  • Uheda E, Kitoh S, Shiomi N (1999) Response of six Azolla species to transient high-temperature stress. Aquat Bot 64:87–92

    Article  Google Scholar 

  • UNEP (2007) Global environmental outlook 2007, Geo-4. Progress Press Ltd, Valletta, p 540

    Google Scholar 

  • Verburg P, Hecky RE, Kling H (2003) Ecological consequences of a century of warming in Lake Tanganyika. Science 301:505–507

    Article  Google Scholar 

  • Viers JH, Rheinheimer DE (2011) Freshwater conservation options for a changing climate in California’s Sierra Nevada. Mar Freshw Res 62(3):266–278. doi:10.1071/MF09286

    Article  Google Scholar 

  • Vorosmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467:555–561. doi:10.1038/nature09440

    Article  Google Scholar 

  • Wetlands International (2007) The comprehensive management action plan on Wular lake, Kashmir. Wetlands International, South Asia final report, New Delhi, India, pp. 221

Download references

Acknowledgments

The authors gratefully acknowledge the financial support given by the Earth System Science Organization, Ministry of Earth Sciences, Government of India to conduct this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakil Ahmad Romshoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romshoo, S.A., Rashid, I. Assessing the impacts of changing land cover and climate on Hokersar wetland in Indian Himalayas. Arab J Geosci 7, 143–160 (2014). https://doi.org/10.1007/s12517-012-0761-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-012-0761-9

Keywords

Navigation